
Applying a Disciplined Approach to the Development of a Context-Aware
Communication Application∗

Ted McFadden1 Karen Henricksen1 Jadwiga Indulska2 Peter Mascaro1

1CRC for Enterprise Distributed Systems Technology (DSTC)
Email: {mcfadden, kmh, mascaro}@dstc.edu.au

2School of Information Technology and Electrical Engineering
The University of Queensland, St Lucia QLD 4072 Australia

Email: {jaga}@itee.uq.edu.au

Abstract

Pervasive computing applications must be engineered
to provide unprecedented levels of flexibility in order to
reconfigure and adapt in response to changes in comput-
ing resources and user requirements. To meet these chal-
lenges, appropriate software engineering abstractions and
infrastructure are required as a platform on which to build
adaptive applications. In this paper, we demonstrate the
use of a disciplined, model-based approach to engineer a
context-aware, Session Initiation Protocol (SIP) based com-
munication application. This disciplined approach builds
on our previously developed conceptual models and infras-
tructural components, which enable the description, acqui-
sition, management and exploitation of arbitrary types of
context and user preference information to enable adapta-
tion to context changes.

1. Introduction

In current computing environments characterised by mo-
bility of users and heterogeneity of computing devices and
networks, the context of computing applications (e.g., com-
puting power, type of available networks, Quality of Ser-
vice of communication and user preferences) may change.
In order to adapt to these changes, applications need to be
context-aware. That is, they need to understand the context
and be able to adjust their behaviour to context changes.

To address the continuing challenges of building flexi-
ble and evolvable context-aware applications we have de-
veloped innovative approaches to modelling context and

∗The work reported in this paper has been funded in part by the Co-
operative Research Centre for Enterprise Distributed Systems Technology
(DSTC) through the Australian Federal Government’s CRC Programme
(Department of Education, Science, and Training).

context-dependent user preferences and policies, as well as
new software engineering abstractions and supporting in-
frastructure [8, 7, 9, 6]. In this paper, we illustrate how
these models are applied to an example context-aware com-
munication application. Communication has been widely
explored as a compelling application domain for context-
awareness. A variety of application types have been devel-
oped, including:

• text-based messaging and chat programs that provide
users with information about other users’ presence, lo-
cation, mood and other relevant context [14, 15]; and

• communications applications that exploit a variety of
information such as users’ locations, activities, avail-
able devices, and channel types to assist in the rout-
ing of calls so that disruption is minimised and missed
calls are avoided [17, 19, 15].

It is the second category of application that we use to il-
lustrate our disciplined approach to context-aware applica-
tion development in this paper. We consider a self-adapting
communication application that exploits context and pref-
erence information to allow users to communicate seam-
lessly with one another. The application coordinates a set of
devices and communication channels for each person such
that configuration requirements are minimal and users need
only specify the individual(s) they wish to contact, rather
than the means by which this is done. Interactions between
users can involve an arbitrary number of devices and a va-
riety of communication modes, including videoconferenc-
ing, telephone calls and text messaging. This application
is based on the Session Initiation Protocol (SIP) [16], the
emerging standard for session and call control.

The application exploits a rich set of contextual informa-
tion in order to self-configure and adapt, including the loca-
tion of people and devices, activity types, device network,



status, and power. In addition, the application relies on sys-
tem policies and user preference information to evaluate the
suitability of available communication channels for the cur-
rent context of use. Policies and preferences can be modi-
fied on-the-fly, in order to support highly flexible behaviour
and accommodate an evolving set of system resources and
user requirements.

This context-aware communication application builds on
our experiences with developing an earlier communication
prototype [8]. The new application described in this paper is
considerably more powerful, as it removes the initial setup
tasks, and is also capable of dynamically adapting commu-
nication channels mid-session. Additionally, the new ap-
plication incorporates a refined context model (building on
new sensor types), and an improved version of our context
and preference management infrastructure. The case study
we present in this paper underscores the importance of an
expressive and flexible set of modelling and software engi-
neering abstractions to support change.

The structure of the paper is as follows. Section 2 dis-
cusses context-aware system models and briefly reviews our
previously developed conceptual models for context and
preference description and management, and programming
of context-aware applications. This description is supported
by brief examples showing how the models are used in our
context-aware communication application. Next, Section 3
provides an overview of the software infrastructure we im-
plemented to support our conceptual models, while Section
4 shows the architecture of our context-aware communica-
tion application and its interactions with the infrastructure.
Finally, Section 5 concludes the paper with a discussion of
lessons learned in the development of the communication
application and topics for future work.

2. Generic models for context-aware systems

2.1. Context models

Developing context-aware applications continues to
present software engineering challenges. Well known so-
lutions that assist with acquiring and processing context in-
formation from sensors have been proposed by Dey et al.
[4], Schmidt et al. [17] and Chen and Kotz [1]. In addi-
tion, a variety of context management systems that main-
tain repositories of context information and provide sophis-
ticated query facilities to context-aware applications have
also recently appeared [12, 11]. These solutions focus on
removing complex functionality from the applications and
placing it within shared infrastructure, but do not place
much emphasis on providing context modelling techniques
that are natural to use for the application developer. To ad-
dress this problem, we have developed context modelling
techniques that provide two levels of abstraction: facts and

situations. The latter allow programmers to define high-
level classes of context that are appropriate for use in de-
scribing context-aware functionality. Situations are consid-
erably closer than collections of facts to the way humans
conceptualise context, and also support composition and
reuse so that complex situations can be easily formed in-
crementally by the programmer.

Modelling context facts. Context facts suitable for man-
agement in context repositories are modelled using our
Context Modelling Language (CML) [7]. Figure 1 shows
how CML’s generic modelling constructs have been used
to model the context information required by our context-
aware communication application. The model describes key
entities of the system including users, devices, absolute and
relative locations, SIP contact URIs, and device character-
istics such as power levels and supported communication
modes. The fact types, which define relationships between
these entities, are denoted by sequences of role boxes, and
can be classified as static, profiled, sensed, or derived. The
context model is instantiated as a set of facts stored in a con-
text database, and the fact types are used to define higher-
order situations as shown in the next subsection.

Modelling situations. We model abstract classes of con-
text as situations. Situations are defined by constraints on
context facts expressed using a variant of predicate logic,
and can be easily combined, allowing complex situations to
be incrementally formed by the programmer. We showed in
[8] that our situation abstraction is conceptually similar to
the model proposed by Dey and Abowd [3], but is consid-
erably more expressive.

Some example situations for our context-aware commu-
nication application are shown below.

• PowerLow(device):
exists power
. HasPower[device, power]
. power < 0.1

• CommunicationModeAvailable(person, mode):
exists device
. PersonNear[person, device]
. SupportsMode[device, mode] and

HasStatus[device, "available"])

The first example represents the condition in which a de-
vice has low battery power, while the second is a situation
that indicates whether a communication mode (voice, text,
video, etc.) is currently accessible to a person. According to
the situation, the mode is available if there is a device near
the person that supports the mode and is available for use.

2.2. Preference modelling and management

There is growing recognition of usability challenges as-
sociated with context-aware software related largely to a



Person
(name)

person
near

SIP Address
(URI)

(timestamp)
Freshness

Static information

Sensed Information

Derived information

Profiled information

Quality annotation

Uniqueness/key constraint

Alternative uniqueness constraint

Alternative role

has busy status

has address

contains

(name)

Device type
(fixed/mobile)

Mode

has status

Type of place
(name)

Device
(ID)

Location

using

Power
(%)

SIP Address
(URI)

s
a

s

aa

*

*

*

*

*

location has type

device has type

supports mode

supports network

(device near(d2, d1) or device near(d1, d2)))

(name)

current
location

has
address

device
near

Legend
using(p, d1) or (using(p, d2) and

person near(p, d1) iff

current location(p, l) iff

person near(p, d) and contains(1, d)

has power

last known
location

(audio/video/text)

(busy/available)
Busy Status

(on/off/unknown)
Status

Network type

Figure 1. Context fact model for the communication application

lack of user control over applications’ actions. After evalu-
ating existing approaches to preference modelling and elici-
tation such as [2, 5], we developed a novel preference mod-
elling technique based on the situation abstraction [8]. The
preference model supports the ranking of a set of choices
according to the context. Each preference takes the form of
a named pair consisting of a scope and a scoring expression.
The scope describes the context in which the preference ap-
plies in terms of situations. The scoring expression assigns
a score to a choice, where the score is either a numerical
value in the range [0,1], such that increasing scores rep-
resent increasing desirability, or one of the special values
prohibit, indifferent, oblige or undefined.

Below is a simple user preference set from our context-
aware communication application that asserts a user’s pref-
erence for selecting a fixed-line phone over a mobile device:

• UserPrefs:

– FixedPref =
when Fixed(dev) rate 1

– MobilePref =
when Mobile(dev) rate 0.5

The above example is very simple, but user preferences
can also be considerably more sophisticated, incorporating
arbitrary types of context information.

In our application, individual user preferences are used
in conjunction with system preferences, a sample selection
of which is illustrated below:

• SysPrefs:

– NearPref =
when NearDevice(user,dev) rate 1

– AvailablePref =
when not Available(dev)
rate prohibit

– PowerPref =
when PowerLow(dev) rate 0.1

• CompositePrefs:

– AvgSysPrefs =
when true rate average(SysPrefs)

– AvgUserPrefs =
when true rate average(UserPrefs)

– FinalEval =
when true rate
average(AvgSysPrefs,AvgUserPrefs)

The first system preference set, SysPrefs, de-
fines standard preference rules that are applied across
our communication system for device selection, while



CompositePrefs provides additional composite prefer-
ences that describe how the ratings produced by the indi-
vidual preferences in the SysPrefs set and other pref-
erence sets are combined to obtain aggregate ratings. To
illustrate, using AvgSysPrefs as an example, this com-
posite preference will always prohibit the use of a device
that is not available and assign a rating of 1 to a device that
is near the user, unless the device has low power, in which
case the rating will be 0.55 [(0.1+1)/2]. The system prefer-
ences are augmented with a dynamically defined and evolv-
able set of user-specific preferences, UserPrefs. The
FinalEval preference combines the aggregate score pro-
duced by the AvgUserPrefs preference with the aggre-
gate AvgSysPrefs score by averaging. The low-level
preference format shown in the examples is not directly ex-
posed to users, who manipulate their preferences through a
user-friendly graphical interface.

2.3. Programming models

In addition to developing these context and preference
modelling abstractions, we have also created further ab-
stractions and tools to support the software engineering pro-
cess. Most current approaches to building context-aware
applications embed simple decision logic directly into the
source code, creating an undesirable degree of coupling
between applications and the context models. To reduce
the coupling and allow applications to gracefully evolve
when the context models are modified to reflect changes
in the underlying sensing infrastructure or in user require-
ments, we created two new models of programming (trig-
gering and branching models) that exploit our situation and
preference abstractions. Triggering is already commonly
used in context-aware computing. The branching model
supports context-dependent choice amongst a set of alter-
natives, based on context situation and user preferences,
via several methods including rank, and selectBest.
These methods form an API and allow context and pref-
erences to be evaluated outside the application logic. The
models are described fully in a previous paper [8], and their
use for our communication application is demonstrated in
section 4.

3. Infrastructure

We integrated the conceptual foundations described in
Section 2 into a software infrastructure that provides con-
text and preference management functions and implements
toolkit support for the programming models. The infras-
tructure is organised into the following layers (illustrated in
the bottom half of Figure 2.)

• Context gathering layer. This layer acquires context

information and processes this information using in-
terpretation and data fusion. Elvin [18], an event no-
tification scheme that employs content-based routing,
provides a loose coupling between components of this
layer.

• Context and preference management layer. The gath-
ered context information is stored as context facts by
the context manager, which is also responsible for
maintaining the situation definitions. The preference
manager stores and evaluates user and system prefer-
ence information.

• Context toolkit layer. This layer provides a pro-
grammer’s toolkit that implements the triggering and
branching models, and provides means for querying
the context and preference managers.

The context manager is the central and most complex
component. Features of the context manager include syn-
chronous query and update, as well as subscription-based,
asynchronous notification of context events.

Our current infrastructure represents a substantial refine-
ment of our earlier prototype [8], which incompletely im-
plemented the functionality of the context manager and sup-
ported only one of our two programming models.

4. Context-aware communication application

Our application leverages context and preference infor-
mation to allow for seamless communication between indi-
viduals. The application relies on context and preference
evaluation for both call initiation and mid-stream call trans-
fer in response to context change. The former makes use
of our branching programming model, and the latter both
the trigger and branching models. Our application controls
communications devices (i.e., instantiates communication
sessions between devices) using the SIP protocol. In the
following subsections we describe the design of the appli-
cation, including necessary extensions to the SIP protocol,
and the interactions of the application with our infrastruc-
ture for pervasive computing.

4.1. Context and preference manager usage

To set up the adaptive communications application, the
context manager is initially loaded with the appropriate fact
and situation definitions. The context manager is then popu-
lated with static and profiled context facts such as the device
types (fixed or mobile) and supported networks.

While the application is running, various sensors and
software agents generate raw context information that is



processed and presented to the context manager. For ex-
ample, location and device status updates are fed as corre-
sponding context facts into the context manager. The con-
text manager evaluates whether the update requires any reg-
istered context fact or situation subscriptions to receive an
event trigger. In our system, the SIP proxy subscribes to
situation information concerning active calls.

The preference manager is initially loaded with the de-
fault application system preference set. Users of the system
may then register their own preference sets. The preference
sets for this application rate the suitability of a given de-
vice for communication in a specific context. Key context
elements used in the preferences include the user location,
user-device proximity, device status and mode.

4.2. SIP extension

SIP is a text-based, application-level, signalling protocol
allowing for the setup, control, and tear-down of communi-
cations sessions between two or more SIP user agents. A
user agent can take a number of forms such as a phone,
instant messenger program, pager, PDA or PC softphone,
or an automated software service. SIP uses URIs, such
as ‘sip:emma@pace.dstc.edu.au’ to identify logical user
(or service) contact points independently of specific user
agents, network addresses, or communication session end-
points. Communication endpoints may be re-negotiated
mid-session.

The standard SIP architecture defines proxies and regis-
trars that aid in routing SIP requests. A SIP proxy is concep-
tually similar to a HTTP proxy, except that no content in-
formation flows over the control channel. A registrar works
in conjunction with, or as part of, a proxy to provide call-
redirection capabilities.

SIP user agents may contact a registrar (or locator) proxy
service and register specific forwarding contact SIP URIs
for a logical URI identity that is in a SIP domain of the reg-
istrar. SIP proxies make use of this registration information
to route SIP requests to the appropriate next hop. For ex-
ample, a SIP proxy for the SIP domain ‘dstc.edu.au’ could
forward a request directed to ‘sip:pace-user1@dstc.edu.au’
to ‘sip:pace-user1@ipaq57.dstc.edu.au’, if the ipaq57 de-
vice was currently registered as the contact for pace-
user1@dstc.edu.au.

Although SIP registrar and proxy behaviour are stan-
dardised, the interface between a SIP registrar and proxy
is not. The registrar feature of SIP permits some very use-
ful dynamic call routing to occur, however it places the pri-
mary burden for dynamic behaviour on the individual user
agents and provides limited flexibility in coordinating the
behaviour of multiple user agents.

In our system, the somewhat static SIP process for reg-
istration and proxy lookup has been replaced with a more

dynamic, context-sensitive approach that also permits mid-
stream call redirection (transfer) that need not be initi-
ated by an individual user agent. This is done in a plug-
compatible way with SIP, such that our system appears as
a standard SIP proxy to other SIP agents, as illustrated in
Figure 2. This allows us to use our application with existing
SIP user agents and services.

In a standard SIP environment, user agent requests, such
as the SIP INVITE used to initiate a call in Figure 2, can
be mediated by a proxy. When a proxy receives a request, it
may query a locator component (associated with a registrar)
to determine if the SIP URI specified in the request should
be redirected to a different contact URI. In our system, the
proxy issues an asynchronous ‘Locate’ message for the re-
quested URI to any available system locators (SIP Locator
1-N in Figure 2) to determine a contact URI. These loca-
tors do not have static registration tables. Instead, they use
the context and preference information, evaluated through
the context toolkit (as described in the next subsection), to
determine a contact URI, if available. Locators that success-
fully determine a contact URI asynchronously reply to the
proxy with a ‘ForwardTo’ message. The ForwardTo mes-
sage elements include the forwarding URI and a rating pro-
duced by combining preference scores for the URI. The SIP
proxy uses any received ForwardTo SIP URIs and ratings to
determine where to route the original request. If no For-
wardTo’s are received within a specified timeout period, the
request is rejected.

The communication between SIP proxies, locator ser-
vices, and some other components makes use of the Elvin
notification service to decouple specific component in-
stances and allow for graceful evolution of the system.

4.3. Context toolkit

For a SIP locator component to process the ‘Locate’
messages described above, each locator uses the context
toolkit to perform the following steps:

1. The Context Manager is queried to discover devices
near the user (using the “person near” fact type).

2. The devices are rated against the FinalEval prefer-
ence, which combines all user and system preferences,
using the branching model API’s rate method.

3. If any device gets an oblige score, it is selected for
use. Otherwise, if at least one device receives a nu-
merical score, the device with the highest score is se-
lected. Otherwise, a device with an indifferent score
is selected arbitrarily (or if there are no devices with
indifferent scores, the locator concludes that there are
no suitable devices and does not respond).



Sensors

Gateway
Device Status

JDBC

RMI

Elvin Notification

Legend

SIP Locator 2SIP Locator 1 SIP Locator N

Location, Activity, Status

Context / Preference Management Layer

Context Gathering Layer

Context Toolkit
Tookit Layer

Application Layer

Manager
Context

Context DB

Situation DB
Manager

Preference
Preference DB

INVITE sip:pace@dstc.edu.au

SIP Proxy

ForwardTo: sip:pace@ipaq57.dstc.edu.au

Locate: sip:pace@dstc.edu.au

Figure 2. Cooperation between context-aware application and infrastructure

4. The SIP address for the device selected at step 3 is de-
termined from the “has address” fact type which maps
devices to SIP addresses.

If the locator finds a suitable device, it sends a ‘ForwardTo’
message containing the contact URI and the choice rank
value. Alternative locator behaviors are possible but are not
discussed in this paper.

For the SIP proxy to be able to respond to changes in
context affecting currently active calls, the proxy subscribes
for triggers (event notifications) with the context manager
for any situation changes that could affect device prefer-
ences such as a change in location, low power, or on/off sta-
tus for a device. In ECA (Event, Condition, Action) model
terms, the precondition in this case is always true, and the
action is to re-evaluate the preferences for the call of con-
cern. If this re-evaluation results in the selection of any new
devices, the call is re-routed.

5. Discussion and future work

This paper presented a self-adapting, context-aware
communication application implemented using conceptual

models and infrastructure that we developed as a basis for
building context-aware pervasive systems. The use of a dis-
ciplined, model-based approach allowed us to exploit a rich
and diverse set of context information. Moreover, it en-
abled a clean separation between the application and the
underlying context and preference information, leading to
considerable flexibility as the latter can be easily evolved
over time to support changes in user requirements and re-
sources with minimal impact on the application. We have
exploited this facility to experiment with a variety of context
types and preference sets, and anticipate that we will con-
tinue to evolve the context and preferences over time. Our
experiences suggest that this type of experimentation and
fine-tuning will be essential in all but the simplest context-
aware applications. In these applications, the tasks of self-
configuration and adaptation must accommodate many dif-
ferent types of context information, balance diverse and of-
ten conflicting objectives, and exploit new resources as they
become available. The resulting complexity will sometimes
lead to unexpected emergent behaviours, which will only be
fully explored and overcome by trial-and-error.

In our application, this problem became evident in a phe-
nomenon we refer to as “preference surprise”. This oc-



curred when the communication device selected for an in-
teraction did not match the one expected by the user. One
cause for this is that users’ preference sets typically cap-
ture many different requirements, and although our prefer-
ence model makes it relatively easy to specify each of these
in isolation, the outcome of combining them is not always
intuitive. Adjustment of the relative weights assigned to
the individual preferences is sometimes needed to bring the
device selection in line with the user’s expectation. Cur-
rently, we perform a manual adjustment, but we anticipate
that learning algorithms could be used to exploit user feed-
back (when the user overrides the system’s device selection)
to automatically evolve the preference set.

As part of our ongoing research, we are continuing to
develop additional context-aware applications using our ap-
proach, both in communications and other domains. Most
recently, we have designed a common context model for
a family of applications supporting independent living of
the elderly, illustrating the potential of our model-based ap-
proach to support reuse of context facts, situation defini-
tions, and user preferences [10]. We are also designing and
implementing various extensions to our software infrastruc-
ture and programming toolkits to provide privacy support
and improved handling of imperfect and incomplete context
and preference information.

Finally, the use of a consistent model-based approach
to context-aware application development has also allowed
us to begin introducing tools that reduce the overall effort
in programming context-aware applications by automat-
ing aspects of deploying, administering, and programming
using our infrastructure. The first tools, built around a
common compiler front-end for a text based CML context
schema representation, provide generation of SQL context
databases, context manipulation libraries in multiple pro-
gramming languages, and messaging support for content-
based notification systems [13].

References

[1] G. Chen and D. Kotz. Context aggregation and dissemina-
tion in ubiquitous computing systems. In 4th IEEE Work-
shop on Mobile Computing Systems and Applications (WM-
CSA), Callicoon, June 2002.

[2] K. Cheverst, N. Davies, K. Mitchell, and C. Efstratiou. Us-
ing context as a crystal ball: Rewards and pitfalls. Personal
and Ubiquitous Computing, 5(1):8–11, February 2001.

[3] A. K. Dey and G. D. Abowd. CybreMinder: A context-
aware system for supporting reminders. In 2nd Interna-
tional Symposium on Handheld and Ubiquitous Computing,
volume 1927 of Lecture Notes in Computer Science, pages
172–186. Springer, 2000.

[4] A. K. Dey, D. Salber, and G. D. Abowd. A conceptual
framework and a toolkit for supporting the rapid prototyp-
ing of context-aware applications. Human-Computer Inter-
action, 16(2-4):97–166, 2001.

[5] T. Erickson. Some problems with the notion of context-
aware computing. Communications of the ACM, 45(2):102–
104, February 2002.

[6] K. Henricksen. A framework for context-aware pervasive
computing applications. PhD thesis, School of Information
Technology and Electrical Engineering, The University of
Queensland, September 2003.

[7] K. Henricksen and J. Indulska. Modelling and using imper-
fect context information. In Workshop on Context Modeling
and Reasoning (CoMoRea), 2nd IEEE Conference on Per-
vasive Computing and Communications (PerCom), Orlando,
March 2004.

[8] K. Henricksen and J. Indulska. A software engineering
framework for context-aware pervasive computing. In 2nd
IEEE Conference on Pervasive Computing and Communica-
tions (PerCom), Orlando, March 2004.

[9] K. Henricksen, J. Indulska, and A. Rakotonirainy. Modeling
context information in pervasive computing systems. In 1st
International Conference on Pervasive Computing (Perva-
sive), volume 2414 of Lecture Notes in Computer Science,
pages 167–180. Springer, 2002.

[10] J. Indulska, K. Henricksen, T. McFadden, and P. Mascaro.
Towards a common context model for virtual community ap-
plications. In 2nd International Conference On Smart homes
and health Telematics, Singapore, September 2004.

[11] G. Judd and P. Steenkiste. Providing contextual informa-
tion to pervasive computing applications. In 1st IEEE Con-
ference on Pervasive Computing and Communications (Per-
Com), pages 133–142, Fort Worth, March 2003.

[12] H. Lei, D. M. Sow, J. S. Davis, G. Banavar, and M. R.
Ebling. The design and applications of a context service.
ACM SIGMOBILE Mobile Computing and Communications
Review, 6(4):45–55, October 2002.

[13] T. McFadden, K. Henricksen, and J. Indulska. Automating
context-aware application development. In Ubicomp’2004
Workshop on Advanced Context Modeling, Reasoning and
Management, Nottingham, September 2004.

[14] A. J. H. Peddemors, M. M. Lankhorst, and J. de Heer. Pres-
ence, location, and instant messaging in a context-aware ap-
plication framework. In 4th International Conference on
Mobile Data Management (MDM), volume 2574 of Lecture
Notes in Computer Science, pages 325–330. Springer, 2003.

[15] A. Ranganathan and H. Lei. Context-aware communication.
IEEE Computer, 36(4):90–92, 2003.

[16] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, and E. Schooler. Session Initiation
Protocol (SIP) RFC 3261. IETF, A, 2002.

[17] A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela,
K. Van Laerhoven, and W. Van de Velde. Advanced interac-
tion in context. In 1st International Symposium on Handheld
and Ubiquitous Computing, volume 1707 of Lecture Notes
in Computer Science, pages 89–101. Springer, 1999.

[18] B. Segal, D. Arnold, J. Boot, M. Henderson, and T. Phelps.
Content based routing with elvin4. In Proceedings of the
AUUG2K Conference, 2000.

[19] D. Siewiorek, A. Smailagic, J. Furukawa, N. Moraveji,
K. Reiger, and J. Shaffer. SenSay: A context-aware mo-
bile phone. Technical report, School of Computer Science,
Carnegie Mellon University, 2003.


