
A Software Engineering Framework for Context-Aware Pervasive Computing∗

Karen Henricksen
CRC for Enterprise Distributed Systems Technology and

School of Information Technology and Electrical Engineering, The University of Queensland
kmh@dstc.edu.au

Jadwiga Indulska
School of Information Technology and Electrical Engineering, The University of Queensland

jaga@itee.uq.edu.au

Abstract

There is growing interest in the use of context-awareness
as a technique for developing pervasive computing applica-
tions that are flexible, adaptable, and capable of acting au-
tonomously on behalf of users. However, context-awareness
introduces various software engineering challenges, as well
as privacy and usability concerns. In this paper, we present
a conceptual framework and software infrastructure that to-
gether address known software engineering challenges, and
enable further practical exploration of social and usabil-
ity issues by facilitating the prototyping and fine-tuning of
context-aware applications.

1. Motivation

It is widely acknowledged that pervasive computing in-
troduces a radically new set of design challenges when com-
pared with traditional desktop computing. In particular, per-
vasive computing demands applications that are capable of
operating in highly dynamic environments and of placing
minimal demands on user attention. Context-aware appli-
cations aim to meet these requirements by adapting to se-
lected aspects of the context of use, such as the current lo-
cation, time and activities of the user.

In recent years, a variety of prototypical context-aware
applications have been developed, such as context-aware
guides that present tourists with information of relevance
to the current location [8, 1]. There are also ongoing efforts
to construct instrumented environments that monitor the ac-
tivities of their occupants using context sensors, with objec-

∗ The work reported in this paper has been funded in part by the Co-
operative Research Centre for Enterprise Distributed Systems Tech-
nology (DSTC) through the Australian Federal Government’s CRC
Programme (Department of Industry, Science & Resources).

tives such as allowing the elderly to live as independently
as possible while ensuring that emergencies are quickly de-
tected [14, 21].

Despite the recent flurry of interest, context-aware ap-
plications have not yet made the transition out of the labo-
ratory and into the marketplace. This is largely a result of
high application development overheads, social barriers as-
sociated with privacy and usability, and an imperfect under-
standing of the truly compelling (and commercially viable)
uses of context-awareness. This paper presents a software
engineering framework that addresses these challenges: the
first by simplifying design and implementation tasks asso-
ciated with context-aware software, and the latter two by
facilitating the types of rapid prototyping and experimen-
tation that are required in order to overcome these obsta-
cles. The framework is based around a set of novel concep-
tual foundations, including context modelling approaches
that describe context at two different levels of granularity,
a preference abstraction, and a pair of complementary pro-
gramming models. These are introduced in Sections 2 to 4,
and are then integrated into a software infrastructure for per-
vasive systems in Section 5. Section 6 presents the results
of a case study that we carried out to evaluate the concep-
tual framework and infrastructure, and Section 7 concludes
the paper with a discussion of key topics for future research.

2. Context modelling techniques

Much of the recent research in the field of context-
awareness has adopted an infrastructure-centred view;
that is, it has assumed that the complexity of engineer-
ing context-aware applications can be substantially re-
duced solely through the use of infrastructure responsible
for the gathering, managing and dissemination of con-
text information. To this end, a variety of solutions that ac-
quire and interpret context information from sensors

[11, 6], and manage integrated repositories of context in-
formation that are easily queried by applications [19], have
been proposed. While such solutions are important, we ar-
gue that an infrastructure-centred view tends to lead to
abstractions for describing and programming with con-
text that are not the most natural ones. In an earlier paper
[16], we observed that most of the proposed infrastruc-
tures are built upon context models that are both informal
and lacking in expressive power.

It has been our goal, therefore, to develop a framework
that integrates a set of well-defined context modelling and
programming abstractions with the types of infrastructural
support described above. To this end, we developed the con-
ceptual foundations of our framework first, starting with
context modelling as our primary interest. As we set out
with the goal of creating tools that could support the en-
gineer in a variety of tasks (not only implementation), we
followed the approach advocated by Coutaz and Rey [9] of
employing context models that can be refined incrementally
throughout the software engineering life-cycle. In Sections
2.2 to 2.4 we present three separate yet closely integrated
modelling approaches that we have developed to support (i)
the exploration and specification of an application’s con-
text requirements, (ii) management of context information
stored in a context repository, and (iii) specification of ab-
stract classes of context that are close to the way the pro-
grammer and human user view context. First, however, we
briefly discuss the features of context information that dif-
ferentiate the context modelling problem from other infor-
mation modelling problems.

2.1. Characteristics of context information

Context information can originate from a wide variety of
sources, leading to extreme heterogeneity in terms of qual-
ity and persistence. While much of the previous research
in context-awareness focuses only on fairly homogeneous
sets of context information (usually sensed information, but
sometimes only location data), we have found rich con-
text models that integrate sensed, static, user-supplied (pro-
filed) and derived information to be the most useful. These
four classes of information each display their own distinc-
tive characteristics [16]; for example, sensed context is usu-
ally highly dynamic and prone to noise and sensing errors,
while user-supplied information is initially very reliable, but
is often allowed by users to become out of date. Our con-
text modelling abstractions accommodate all four types.

The problem of imperfect context information is well
recognised, and some of its causes have already been de-
scribed. Some context modelling solutions address part of
this problem by allowing context information to be asso-
ciated with quality metadata, such as certainty and fresh-
ness estimates [19]. This approach is not completely ade-

quate, however, as it does not address the modelling of the
ambiguous information that arises when multiple sources
of context information report different information and the
ambiguity cannot be resolved, nor does it allow the infor-
mation that an aspect of the context is completely unknown
to be explicitly represented. Our context modelling abstrac-
tions are unique in that they address all of these issues.

2.2. A graphical modelling approach

We developed our first context modelling approach, the
Context Modelling Language (CML), as a tool to assist de-
signers with the task of exploring and specifying the con-
text requirements of a context-aware application. CML pro-
vides a graphical notation for describing types of informa-
tion (in terms of fact types), their classifications (sensed,
static, profiled or derived), relevant quality metadata, and
dependencies between different types of information. CML
also allows fact types to be annotated to indicate whether
ambiguous information is permitted (e.g. multiple alterna-
tive location readings), and whether historical information
is retained. Finally, it supports a variety of constraints, both
general (such as cardinality of relationships) and special-
purpose (such as snapshot and lifetime constraints on his-
torical fact types).

Initially, we formulated CML independently of any es-
tablished information modelling technique. This afforded
the flexibility to express the desired concepts in the most
flexible way. The results of this initial exploration are pre-
sented in [16]. Subsequently, we chose to reformulate the
modelling concepts as extensions to Object-Role Modeling
(ORM) [13]. ORM was chosen because of its closeness to
our original modelling approach, its superior formality and
expressiveness in comparison to solutions such as ER, and
the presence of a mapping to the relational model (allow-
ing a straightforward representation of a context model as a
relational database if desired).

The example context model shown in Figure 1 (a) il-
lustrates CML’s graphical notation. This model captures (i)
user activities in the form of a temporal fact type that covers
past, present and future activities, (ii) associations between
users and their communication channels and devices, and
(iii) locations of users and devices (both absolute and rela-
tive, where the latter is represented as a derived fact type).
Each ellipsis depicts an object type (with the value in paren-
theses describing the representation scheme used for the ob-
ject type), while each box denotes a role played by an object
type within a fact type. The model shows that user and de-
vice locations are both sensed and can be populated by al-
ternative facts (i.e., each user or device can have multiple
recorded locations, of which at most one is correct). Addi-
tionally, each fact about a user or device location has an as-
sociated certainty measure that takes the form of a probabil-

ity estimate. Finally, user activity is shown by the model to
be dependent on user location. For further details of CML’s
modelling constructs, the reader is referred to [15].

2.3. Relational representation

We leverage the mapping of ORM to the relational model
to create a relational representation of context information
that is well suited to context management tasks, such as
enforcement of the constraints captured by CML, storage
within a database and querying by context-aware applica-
tions. Our extension of Halpin’s relational mapping proce-
dure [13] to incorporate the context modelling constructs of
CML is described in a previous paper [17], and is not re-
peated here. However, the result of mapping of the example
context model shown in Figure 1 (a) to a set of basic rela-
tions is shown in Figure 1 (b).

The relational mapping leads to a representation of con-
text that captures abstract fact types as relations and atomic
facts as tuples in a database. In order to support reasoning
about contexts, we adopt a closed world assumption. This
operates roughly as follows. Assume that R is the set of re-
lations belonging to a context model, I is an instantiation
of the model, I(r) represents the set of tuples in I belong-
ing to a relation r ∈ R, and dom is the set of constant val-
ues permitted within any instantiation of the model. Then
an assertion of the form r[c1, ..., cn] (where r ∈ R and each
ci ∈ dom for 1 ≤ i ≤ n) is true for I if there is a tu-
ple < c1, ..., cn > in I(r), and false otherwise.

As it stands, this simple interpretation does not accom-
modate uncertain context information. Therefore, we ex-
tend it to deal with unknowns (represented by null values
in tuples) and ambiguity (represented as alternative facts)
using a three-valued logic. An assertion r[c1, ..., cn] (where
r and c1, ..., cn are constrained as before) evaluates to the
third logical value (unknown) when the tuple < c1, ..., cn >

is not present within I(r), but a matching tuple is present
when one or more of the constants ci is replaced with the
special null value, or when the tuple is present, but is am-
biguous (that is, there are alternative facts present1). An as-
sertion is false when it is neither true nor unknown.

2.4. The situation abstraction

The graphical notation of CML is well suited for use
when defining the context information used by a context-
aware application, and its relational analogue is a natu-
ral choice for context storage and management, but neither
serves as a natural programming abstraction. Both describe
context information at a finer granularity than is required

1 For a full definition of alternative facts/tuples, see [15].

when describing the abstract contexts that determine appli-
cation behaviour. In light of this, we developed the situation
abstraction as a way to define high-level contexts in terms
of the fact abstraction of CML. Situations can be combined,
promoting reuse and enabling complex situations to be eas-
ily formed incrementally by the programmer. Our situation
abstraction is similar to that proposed by Dey and Abowd
[10] for use in their CybreMinder application, but is consid-
erably more expressive.

Situations are expressed using a novel form of predi-
cate logic that balances efficient evaluation against expres-
sive power. They are defined as named logical expressions
of the form S(v1, ..., vn) : ϕ, where S is the name of the
situation, v1 to vn are variables, and ϕ is a logical expres-
sion in which the free variables correspond exactly to the
set {v1, ..., vn}. The logical expression combines any num-
ber of basic expressions using the logical connectives, and
(∧), or (∨) and not (¬), and special forms of the univer-
sal and existential quantifiers. The permitted basic expres-
sions are either equalities (e.g. t1 = t2), inequalities (e.g.
t1 ≤ t2) or assertions of the form r[t1, ..., tn], as described
in the previous section.

As there are problems associated with evaluating uncon-
strained quantified expressions (both in terms of efficiency
and in relation to so-called unsafe expressions [15]), we em-
ploy the following restricted forms of quantification that en-
sure that the quantified variables are immediately bound:

• ∀x1, ..., xi • r[t1, ..., tn] • ϕ

• ∃x1, ..., xi • r[t1, ..., tn] • ϕ

where {x1, ..., xi} ⊆ {t1, ..., tn}, ϕ is a logical expression
and r[t1, ..., tn] is an assertion, as described above2. The as-
sertion in the middle of these expressions serves to restrict
the possible values for the variables x1, ..., xi, so that ϕ is
evaluated only over these values.

The evaluation of a situation S against a binding of val-
ues for its n variables, v1, ..., vn, and a context instance, I ,
occurs according to the usual semantics of the logical oper-
ators under a three-valued logic (with the modifications de-
scribed above for the universal and existential quantifiers),
and according to the closed-world interpretation of asser-
tions that was outlined in the previous section. Typically,
the variable bindings are supplied by the context-aware ap-
plication, and describe selected aspects of the application
context (such as the identities of participants in a call in the
case of a communication application), whereas the context
instance is the set of additional context information that is
available through a context management system that is sep-
arate to the application (this is the set of context informa-
tion captured by the CML model).

2 Note that the symbol “•” acts as a separator and has no special seman-
tics here.

EngagedIn(Person, Activity, StartTime, EndTime)

(a)

HasChannel(Person, CommunicationChannel) DeviceLocatedAt(Device, Location, Probability)

PermittedToUse(Person, Device)

PersonLocatedAt(Person, Location, Probability) Synchronous(CommunicationMode)

LocatedNear(Person, Device)

engaged in(p1,a) dependsOn located at(p2,l)

iff p1 = p2

s

(name)

Person Device

(id)

engaged in

permitted to use

(b)

located near

Static fact type
Profiled fact type
Derived fact type
Temporal fact type
Ambiguous/alternative fact type

s

*
[]
a

Key/uniqueness constraint

Key

Snapshot uniqueness constraint
Alternative uniqueness constraint

Dependency
Quality annotation

HasMode(CommunicationChannel, CommunicationMode)

RequiresDevice(CommunicationChannel, Device)

Sensed fact type

* located at

located at

(name)

Location

a

a

[]

requires device

has mode
Communication

synchronous

Mode (name)

has channel

s

Certainty

Communication

Channel (id)

Probability
(nr)+

* located near(p,d) iff located at(p, l1)

 and located at (d, l2)

 and l1=l2

Activity
(name)

Figure 1. (a) An example context model, constructed for the context-aware communication appli-
cation described in Section 6. (b) Relational mapping of the model shown in (a). Note that the
LocatedNear relation, which represents derived context information, would be implemented as a
view rather than an ordinary relation.

Some example situations, related to the communication
application described by way of a case study in Section 6,
are shown in Figure 2. These assume the fact-based context
model that was presented in Figure 1. The Occupied pred-
icate indicates whether a given person is currently engaged
in an activity that generally should not be interrupted (“in
meeting” or “taking call”), on the basis of the temporal En-
gagedIn relation. This predicate examines exactly those ac-
tivity facts for which the current time (returned by the func-
tion timenow()) overlaps with the recorded time interval

(providing special treatment for facts that have no recorded
start/end time). Similarly, CanUseChannel is satisfied for a
given person, p, and communication channel, c, when all of
the devices required in order to use c are located in close
proximity to p, and p additionally has permission to use
these devices. The SynchronousMode predicate holds for
a given communication channel provided that the mode of
this channel (as recorded by the HasMode relation) is syn-
chronous (indicated by its appearance in the Synchronous
relation). Finally, the simple Urgent predicate is satisfied

Occupied(person) :

∃t1, t2, activity • EngagedIn[person,activity, t1, t2]•

(t1 ≤ timenow() ∧ (timenow() ≤ t2 ∨ isnull(t2))∨

(t1 ≤ timenow() ∨ isnull(t1)) ∧ timenow() ≤ t2)∧

(activity = “in meeting” ∨ activity = “taking call”)

CanUseChannel(person, channel) :

∀device •RequiresDevice[channel, device] • LocatedNear[person, device] ∧ PermittedToUse[person,device]

SynchronousMode(channel) :

∀mode •HasMode[channel, mode] • Synchronous[mode]

Urgent(priority) :

priority = “high”

Figure 2. Example situation predicates for a context-aware communication application. These as-
sume the context model shown in Figure 1.

whenever the priority variable has the value “high”.

3. Preference model

There is growing recognition of common usabil-
ity challenges associated with context-aware software
related largely to a lack of transparency of, and user con-
trol over, applications’ actions [7], and a consequent need
for improved techniques for eliciting and capturing user re-
quirements and preferences [5, 18]. To date, however,
there has been very little research addressing these is-
sues. One exception is the recent work of Byun and Chev-
erst, which explored the integration of user modelling
techniques into context-aware applications in order to au-
tomatically elicit and adapt to user requirements [5].
This work appears promising; however, we argue that ex-
plicit means of representing user preferences are also re-
quired. The use of an explicit representation allows users
to formulate their own preferences if desired, and also pro-
vides a tool for exposing preference information and
thereby providing transparency, so that users are able to un-
derstand the motivation for their applications’ actions, and
to make corrections as necessary. An explicit represen-
tation of preferences can also be compatible with auto-
mated learning techniques similar to those used by Byun
and Cheverst.

We surveyed a variety of preference modelling ap-
proaches, both in the area of context-awareness and in other
fields such as decision theory, information systems and doc-
ument retrieval, with the aim of identifying a preference
abstraction that we could exploit within our software engi-
neering framework to support highly dynamic, customis-
able context-aware behaviour. Within context-aware sys-
tems, preferences are sometimes viewed as a type of

context, and modelled in the same manner as other con-
text information; this is the approach taken by CC/PP [20].
This solution is suitable for expressing very simple require-
ments (such as the set of languages that are acceptable for
presenting information to a user), but not for more sophisti-
cated, context-dependent preferences. We also encountered
difficulties in our attempt to borrow a preference mod-
elling solution from another field, as none of the approaches
we evaluated offered a natural way to incorporate con-
text as a determinant in preferences [15].

Accordingly, we developed a novel preference modelling
technique based on the situation abstraction. This was de-
signed to support straightforward composition of prefer-
ences (such that users can express a set of simple and pos-
sibly conflicting requirements and later combine these to
form more exhaustive preference descriptions) and compat-
ibility with automated preference elicitation techniques.

Our preference model supports the ranking of a set of
candidate choices (such as communication channels that
can be used for interactions between users in the case of a
communication application) according to the context. Each
preference takes the form of a named pair consisting of a
scope and a scoring expression. The scope describes the
context in which the preference applies in terms of situa-
tions. The scoring expression assigns a score to a candidate
choice, where the score is either a numerical value in the
range [0,1], such that increasing scores represent increas-
ing desirability, or one of the special values \, ⊥, Z or ?.
Here, \ represents a veto (indicating that the candidate to
which the score is assigned should not be selected in the
corresponding context), while ⊥ represents indifference or
an absence of preference. The score Z represents obligation
(that is, that the candidate to which the score is assigned
must be selected in the corresponding context), and ? repre-

sents an undefined score (signalling an error condition).
Preferences are grouped into sets, and combined accord-

ing to policies such that a single score is produced for each
choice that reflects all of the preferences in the set. User
feedback can be exploited to adapt the policy to better meet
user requirements (for example, by redistributing weights
assigned to individual preferences) or to add new prefer-
ences to the set.

Figure 3 presents some example preferences. The pref-
erence name is shown at the left, while the scope and
scoring expression are preceded by the keywords when
and rate, respectively. The first preference forbids the
use of synchronous channels, such as telephone and video-
conferencing channels, when the user does not have access
to all of the requisite devices. Preferences p2 and p3 to-
gether imply that synchronous channels are the preferred
choice for urgent calls: p2 assigns these the highest possi-
ble score (1), while p3 assigns all asynchronous channels
(such as email and SMS) a score of 0.5.

It should be noted that the preference format shown in
Figure 3 is not exposed directly to users. Instead, users typ-
ically select from standard preferences that come prepack-
aged with their applications, or construct and combine their
own preferences using graphical editing tools that supply li-
braries of predefined situations and scoring policies.

Like situations, preferences are evaluated at run-time
against a context instance and a set of choice-specific vari-
able bindings. The use of preferences to program flexible,
context-aware behaviour is covered in the following section.

4. Programming models

The crucial role of appropriate abstractions and program-
ming models in the development of flexible context-aware
applications has been long recognised [3]; however, very lit-
tle progress has been made in this area. Most context-aware
applications are still programmed with traditional software
engineering techniques, which embed the use of context in-
formation directly into the source code, leading to largely
static behaviour and applications that are difficult to main-
tain. Similarly, the few programming models that have been
proposed, such as the Stick-e note model [2], are generally
applicable only to narrow application domains.

In the following sections we describe two general pro-
gramming models that can be used in conjunction with
our situation and preference abstractions. The branching
model offers a novel and flexible means to insert context-
and preference-dependent decision points into the normal
flow of application logic. In contrast, the triggering model
has been widely used previously in the programming of
adaptive and context-aware applications, but is reformu-
lated here to exploit the situation abstraction as a means of
describing context changes.

4.1. Branching

The branching model supports context-dependent choice
amongst a set of alternatives. Some example uses of this
model are in context-aware information retrieval [4], and
in the choice of appropriate communication channels for
interactions between users. In these applications, context-
dependent choices are typically realised using if or case
statements. However, these primitive solutions result in a
tight binding of the context model to the application logic,
making it difficult to later change the context model as
the sensing infrastructure and user requirements evolve. To
overcome this problem, we exploit the preference model de-
scribed in Section 3 in our model of branching. User prefer-
ence information forms the link between the context and the
chosen action(s); that is, preferences assign ratings to the al-
ternatives according to the context and other application pa-
rameters, and, based on these ratings, the application se-
lects and invokes one or more actions associated with these.
This solution is extremely flexible, as preference informa-
tion is expressed in an application-neutral format that en-
ables modification and fine-tuning when required (even at
run-time) and facilitates sharing of preferences between ap-
plications, allowing a set of context-aware applications to
provide consistent and coordinated behaviour.

We have implemented support for the branching model
in the form of a Java programming toolkit. Selected meth-
ods provided by this toolkit are shown in Figure 4. The
rate method has as its parameters a set of choices, a pref-
erence (which is likely to be a composite preference encom-
passing a diverse set of user requirements), a valuation bind-
ing variables contained in the preference to constant val-
ues according to the application context, and a Context
object, which is a wrapper for a repository of context in-
formation. It uses these to compute a mapping of choices
to scores, which the application can then act on as desired.
The next two methods select the single best and the best n

choices on the basis of scores assigned by the supplied pref-
erence. Similarly, selectAbove returns the set of choices
whose (numerical) scores lie above a specified threshold,
and selectMandatory returns the set of choices that are
assigned the obligation (Z) score. Each of the last four meth-
ods also has an companion method (not shown), which, in-
stead of returning a set of choices, automatically invokes an
action associated with the choice. Our experiences with us-
ing the toolkit to implement a context-aware communica-
tion application are described later in Section 6.

4.2. Triggering

To support an asynchronous style of programming in
which actions are automatically invoked in response to con-
text changes, we also provide a trigger mechanism that is

p1 = when SynchronousMode(channel) ∧ ¬CanUseChannel(callee, channel)
rate \

p2 = when Urgent(priority)∧ SynchronousMode(channel)
rate 1

p3 = when Urgent(priority)∧ ¬SynchronousMode(channel)
rate 0.5

Figure 3. Example preferences for the context-aware communication application.

Scores rate(Choice[] c, Preference p, Valuation v, Context cx);
Choice selectBest(Choice[] c, Preference p, Valuation v, Context cx);
Choice[] selectBestN(int n, Choice[] c, Preference p, Valuation v, Context cx);
Choice[] selectAbove(Score threshold, Choice[] c, Preference p, Valuation v, Context cx);
Choice[] selectMandatory(Choice[] c, Preference p, Valuation v, Context cx);

Figure 4. Selected methods of the branching toolkit.

built upon the situation abstraction. Context changes are
described as changes in situation states. As there are three
possible states (true, false and unknown), there are six dis-
tinct state transitions. Triggers can be associated with any of
these transitions, or with sequences of transitions (written
t1 → ... → tn, where t1 to tn are transitions), or with sets
of alternative triggers (written t1|...|tn), only one of which
needs to occur in order to invoke the trigger.

We follow the event-condition-action (ECA) model, in
which each trigger includes a precondition on the invoca-
tion of the specified action that is evaluated upon detec-
tion of the trigger event. Like the event, this is specified in
terms of situations. Our model also associates each trigger
with a lifetime, which is one of the following: once, from
<start> until <end>, until <end>, once or n
times.

Two example triggers are shown in Figure 5. The events,
conditions and actions are prefixed by the keywords upon,
when and do, respectively. Actions are described in natu-
ral language for simplicity, but would usually take the form
of invocations of relevant source code. The first trigger has
the effect of notifying the user (“Emma May”) at the con-
clusion of an engagement (defined in Figure 2 as a meet-
ing or a phone call) of any recent missed calls. The sec-
ond trigger assumes that a pair of users are involved in a
phone call, and monitors their ability to use the current tele-
phone lines, invoking adaptation of the channel when this
condition ceases to hold. In both triggers, there are no ad-
ditional preconditions beyond the detection of the specified
event, so the condition is simply the expression true.

5. Software infrastructure

Run-time support for the two programming models, as
well as for related tasks such as management of context

and preference information, is provided by a software in-
frastructure. In this section, we present a brief overview of
the architecture of this infrastructure and the partial imple-
mentation we have developed as proof-of-concept.

The infrastructure is organised into loosely coupled lay-
ers as shown in Figure 6. The context gathering layer ac-
quires context information from sensors and processes this
information, using techniques such as interpretation and
data fusion, to bridge the gap between raw sensor output
and the level of abstraction (and frequency of updates) re-
quired by the context management system (recall from ear-
lier sections that this stores atomic facts). An event notifi-
cation scheme is used to achieve a loose coupling between
the sensing and processing components and the reception
layer. This minimises the problems associated with compo-
nent failures, disconnections and evolution of the sensing
infrastructure.

The context reception layer provides a bidirectional
mapping between the context gathering and manage-
ment layers. That is, it translates inputs from the for-
mer into the fact-based representation of the latter, and
routes queries from the latter to the appropriate compo-
nents of the former.

The context management layer is responsible for main-
taining a set of context models and instantiations of these
using the relational representation described in Section 2.3.
Typically, each application has its own distinct model (how-
ever, applications that perform related tasks may share their
models). It is our intention that the context management
layer be distributed, to provide good query performance
and tolerance of failures and disconnections; however, we
currently implement it as a single shared repository built
around a relational database.

The query layer provides applications and the adapta-
tion layer with a convenient interface with which to query

upon EnterFalse(Occupied(“Emma May”))
when true

do Notify of recent missed calls
always

upon ExitTrue(CanUseChannel(“Emma May”, “3365 5637”)) |
ExitTrue(CanUseChannel(“Michelle Williams”, “3365 9387”))

when true

do Negotiate new communication channel
once

Figure 5. Example triggers.

the context management system using the fact and situ-
ation abstractions. This supports synchronous queries, as
well as asynchronous notifications of the situation changes
described in Section 4.2.

The adaptation layer manages common repositories of
situation, preference and trigger definitions, and evaluates
these on behalf of applications using the services of the
query layer. A single repository is shared by a logical group-
ing of applications, where a group typically comprises all of
the applications residing on a single device or belonging to
a given user.

Finally, the application layer provides toolkit support for
the two programming models. The core functions of the
branching toolkit were already described in Section 4.1. The
triggering toolkit provides methods for dynamically creat-
ing new triggers, as well as for activating and deactivating
the existing triggers.

Currently, we have a working prototype that imple-
ments the basic functions of the context management,
query, adaptation and application layers, focusing on the
branching functionality at the latter two. As mentioned ear-
lier, our context management system is based upon a re-
lational database, and implements all of the fact types and
some of the constraint types of CML. Our implementa-
tion of the query layer is relatively simple, performing a di-
rect mapping of fact and situation queries to SQL queries
that can be directly executed on the relational database.
The asynchronous notification feature has not yet been im-
plemented, as it is not required by the branching model.
The adaptation layer currently stores preference and sit-
uation information (in textual form) within files that can
be edited directly by the application developer and sophis-
ticated users. We have fully implemented the branching
toolkit described in Section 4.1, and we present an evalu-
ation of this toolkit and its underlying abstractions in the
following section.

6. Case study: context-aware communication

We developed a context-aware communication applica-
tion as a testbed for experimenting with the branching and

preference models and our context modelling techniques.
This application functions as an integrated communication
platform, in which the choice of communication channels
for interactions between users is mediated by context-aware
agents. Each agent manages and records a history of the in-
teractions of a given user over a variety of communication
channels, including telephone, email, text messaging and
videoconferencing. Sequences of related interactions are or-
ganised into threads, termed dialogues.

When a user requires an interaction with another person,
the communication agent is invoked. The agent, in cooper-
ation with the agents of the other participants, consults the
contexts and preferences of each party in order to recom-
mend an appropriate channel. The main parameters in this
choice, which we implemented using the branching model,
are user activities, priority of interactions, relationships be-
tween participants, and available communication devices.

In designing the application, we conducted an informal
study to investigate patterns of interpersonal communica-
tion and the factors that users cited for their choices of com-
munication channel. Based on the results of the study, we
constructed a context model using CML and a list of situ-
ations that covered the main classes of context that we be-
lieved users would need to specify their preferences. Next,
we defined a set of default preferences for the application
that users could use without modification if desired. These
steps were carried out in an iterative fashion; that is, when
we encountered preferences that required new types of con-
text information, or situations that we could not express
in terms of the fact-based model, we extended the context
models to accommodate these. They were also driven by
practical considerations: for example, when modelling the
context with CML it was necessary to consider whether the
modelled information could be gathered from users or sen-
sors with the required level of quality.

Next, we mapped the context model manually into the
context management system, generated a set of sample con-
text data for simulation purposes, and implemented the
communication application using the branching toolkit.

On the whole, the results of the case study were very pos-
itive. We found both CML and the situation abstraction nat-

Sensor Sensor Sensor Sensor Sensor

Interpreter Interpreter

AggregatorInterpreter

Receptor Receptor Receptor Receptor

Context gathering layer

Context manager

Model Model Model
Context

repository

Context reception layer

Context management layer

Query Interface

Situation
Repository

Preference
Repository

Trigger
Repository

Adaptation manager

Query layer

Adaptation layer

Programming Toolkit

Application ApplicationApplication Application layer

Key:
Synchronous communication
Asynchronous communication

Figure 6. Architecture.

ural and easy to use, and our experience of mapping the
CML model to a relational database was a painless one.
However, we encountered some unexpected results with the
preference model in relation to preferences that assigned
frequent indifferent scores. This occurred when the prefer-
ence scopes incompletely covered the set of possible con-
texts - for example, when users specified preferences only in
relation to urgent interactions. The result was that the agents
would sometimes fail to suggest any suitable communica-
tion channel. Fortunately, there are two simple solutions to
this problem: to augment the preferences to provide com-
plete coverage of the possible contexts, or to program the
application to provide better handling of indifferent scores.
We adopted the first solution as it did not require changes
to the source code; however, when developing future appli-
cations we intend to design them to follow the second so-
lution, as it is more robust. Our experiences with the pro-

gramming toolkit were very positive; however, we do plan
to extend the toolkit in the future to provide improved han-
dling of the indifferent and veto scores.

Overall, the case study showed that our concep-
tual framework and software architecture are extremely
successful in terms of our original goal of facilitat-
ing the development of context-aware applications that
are flexible, adaptable and autonomous. The use of the
multi-layered context modelling techniques and the branch-
ing model mean that we are able to easily evolve the un-
derlying context model without changing the source code,
and both the developer and the end users can easily adapt
and fine-tune the choice of communication channels sim-
ply by editing the preferences. These features facilitate the
types of experimentation that are necessary to gain a bet-
ter understanding of the most compelling uses of context
information and to explore the usability problems de-

scribed in Section 1. Similarly, the use of customisable
preferences means that a considerable degree of auton-
omy can be achieved by the communication agent without
removing control from the user.

7. Conclusions and future work

We set out to develop conceptual models and a support-
ing software infrastructure capable of facilitating a variety
of software engineering tasks involved in the development
of context-aware software. While we believe that we were
successful in this goal, we also argue that there remains
considerable scope for future work in this area. In partic-
ular, there is a need for a better understanding of the soft-
ware life-cycle associated with context-aware software as a
whole, and for further design tools that address challenges
unique to context-aware applications. Work is just now be-
ginning in the latter area; for example, Gray and Salber re-
cently proposed a design framework that supports an infor-
mal exploration of the types and characteristics of sensed
context information required by an application, focusing on
quality of service [12]. Further tools and methodologies are
needed to address additional problems such as the design
of suitable privacy policies (and application functionality
that conforms to these), in order to protect context infor-
mation from possible abuses, and of user interfaces that ad-
dress known usability challenges, such as the balance of ap-
plication autonomy to user control.

References

[1] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper,
and M. Pinkerton. Cyberguide: A mobile context-aware tour
guide. Wireless Networks, 3(5):421–433, 1997.

[2] P. J. Brown. The stick-e document: a framework for creating
context-aware applications. In Electronic Publishing, pages
259–272, Palo Alto, 1996.

[3] P. J. Brown, J. D. Bovey, and X. Chen. Context-aware appli-
cations: From the laboratory to the marketplace. IEEE Per-
sonal Communications, 4(5):58–64, October 1997.

[4] P. J. Brown and G. J. F. Jones. Context-aware retrieval: ex-
ploring a new environment for information retrieval and in-
formation filtering. Personal and Ubiquitous Computing,
5(4):253–263, December 2001.

[5] H. E. Byun and K. Cheverst. Exploiting user models and
context-awareness to support personal daily activities. In
UM2001 Workshop on User Modeling for Context-Aware
Applications, Sonthofen, July 2001.

[6] G. Chen and D. Kotz. Context aggregation and dissemina-
tion in ubiquitous computing systems. In 4th IEEE Work-
shop on Mobile Computing Systems and Applications (WM-
CSA), Callicoon, June 2002.

[7] K. Cheverst, N. Davies, K. Mitchell, and C. Efstratiou. Us-
ing context as a crystal ball: Rewards and pitfalls. Personal
and Ubiquitous Computing, 5(1):8–11, February 2001.

[8] K. Cheverst, N. Davies, K. Mitchell, and A. Friday. Expe-
riences of developing and deploying a context-aware tourist
guide: the GUIDE project. In 6th International Conference
on Mobile Computing and Networking (MOBICOM), pages
20–31, Boston, August 2000.

[9] J. Coutaz and G. Rey. Recovering foundations for a theory
of contextors. In 4th International Conference on Computer-
Aided Design of User Interfaces (CADUI), Valenciennes,
May 2002.

[10] A. K. Dey and G. D. Abowd. CybreMinder: A context-aware
system for supporting reminders. In 2nd International Sym-
posium on Handheld and Ubiquitous Computing, volume
1927 of Lecture Notes in Computer Science, pages 172–186.
Springer, 2000.

[11] A. K. Dey, D. Salber, and G. D. Abowd. A conceptual frame-
work and a toolkit for supporting the rapid prototyping of
context-aware applications. Human-Computer Interaction,
16(2-4):97–166, 2001.

[12] P. Gray and D. Salber. Modelling and using sensed context
information in the design of interactive applications. In 8th
IFIP International Conference on Engineering for Human-
Computer Interaction, volume 2254 of Lecture Notes in
Computer Science, pages 317–336. Springer, 2001.

[13] T. A. Halpin. Information Modeling and Relational
Databases: From Conceptual Analysis to Logical Design.
Morgan Kaufman, San Francisco, 2001.

[14] S. Helal, B. Winkler, C. Lee, Y. Kaddourah, L. Ran, C. Gi-
raldo, and W. Mann. Enabling location-aware pervasive
computing applications for the elderly. In 1st IEEE Con-
ference on Pervasive Computing and Communications (Per-
Com), Fort Worth, March 2003.

[15] K. Henricksen. A framework for context-aware pervasive
computing applications. PhD thesis, School of Information
Technology and Electrical Engineering, The University of
Queensland, Submitted September 2003.

[16] K. Henricksen, J. Indulska, and A. Rakotonirainy. Model-
ing context information in pervasive computing systems. In
1st International Conference on Pervasive Computing (Per-
vasive), volume 2414 of Lecture Notes in Computer Science,
pages 167–180. Springer, 2002.

[17] K. Henricksen, J. Indulska, and A. Rakotonirainy. Generat-
ing context management infrastructure from context models.
In 4th International Conference on Mobile Data Manage-
ment (MDM) - Industrial Track, Melbourne, January 2003.

[18] A. Jameson. Modeling both the context and the user.
Personal and Ubiquitous Computing, 5(1):29–33, February
2001.

[19] H. Lei, D. M. Sow, J. S. Davis, G. Banavar, and M. R. Ebling.
The design and applications of a context service. ACM SIG-
MOBILE Mobile Computing and Communications Review,
6(4):45–55, October 2002.

[20] M. Nilsson, J. Hjelm, and H. Ohto. Composite capa-
bilities/preference profiles: Requirements and architecture.
W3C Working Draft, 21 July 2000.

[21] V. Stanford. Using pervasive computing to deliver elder
care. IEEE Pervasive Computing, 1(1):10–13, January-
March 2002.

