

Infrastructure for Pervasive Computing: Challenges1

Karen Henricksen†‡, Jadwiga Indulska†‡ and Andry Rakotonirainy‡
†School of Computer Science and Electrical Engineering, The University of Queensland

‡Distributed Systems Technology Centre
Email: {karen, jaga}@csee.uq.edu.au, andry@dstc.edu.au

1 The work reported in this paper has been funded in part by the Co-operative Research Centre Program through the
Department of Industry, Science & Tourism of the Commonwealth Government of Australia.

Abstract: As mobile and embedded computing devices
become more pervasive, it is becoming obvious that the
nature of interactions between users and computers must
evolve. Applications need to become increasingly
autonomous and invisible, by placing greater reliance on
knowledge of context and reducing interactions with
users. Moreover, applications must cope with highly
dynamic environments in which resources, such as
network connectivity and software services, frequently
vary over time. This paper presents our vision of
pervasive computing and enumerates the software
engineering challenges involved in realizing this vision.
It also evaluates the current state of research and
presents an agenda for future investigations in pervasive
computing.

1. Vision

In the future, the computing landscape will evolve into
an environment in which computers are autonomous
devices that provide largely invisible support for tasks
performed by users. Networked computing devices will
proliferate in this landscape, being embedded in objects
ranging from home appliances to clothing, and users will
no longer be tethered to a single computing device. The
nature of devices will change to form augmented
environments in which the physical world is sensed and
controlled in such a way that it becomes merged with the
virtual world. Norman suggests that computing devices
will also become more specialized in purpose, with each
device being designed to solve a narrow set of well
defined and interrelated tasks [1].

Applications will have greater awareness of context,
and thus will be able to provide more intelligent services
that reduce the burden on users to direct and interact with
applications. The context of an application may include
“any information that can be used to characterize the

situation of an entity”, where an entity is “a person, place,
or object that is considered relevant to the interaction
between a user and an application, including the user and
applications themselves” [2]. Many applications will
resemble agents that carry out tasks on behalf of users by
exploiting the rich sets of services available within
computing environments.

This paper addresses the research issues associated
with this vision of the future computing landscape. The
structure of the paper is as follows. Section 2 presents
our assumptions about the pervasive computing
environment. Next, Section 3 describes the requirements
and challenges associated with our vision, while Section 4
presents a survey of existing approaches and evaluates
them with respect to the requirements identified in
Section 3. Section 5 describes an agenda for research
towards pervasive computing and Section 6 presents
some concluding remarks.

2. Assumptions

Our requirements for the pervasive computing

infrastructure are centered on a high-level conceptual
model consisting of devices, users, software components
and user interfaces. The distinction between software
components and user interfaces is an important one.
While software components are programming units that
are dynamically composed to form complete applications,
user interfaces are conceptual entities that are responsible
for interaction with the user, and which may be
distributed over multiple software components and
devices.

In the remainder of this paper, we outline software
engineering issues associated with the four components of
our model. Other important concerns in pervasive
computing, such as security and privacy, communication
infrastructure, network protocols for PANs, sensor
networks and energy efficiency, fall outside the scope of

the paper. For a discussion of communication issues in
pervasive computing, see Esler et al. [3], who advocate an
approach based on data-centric networking, and Arnold et
al. [4], who describe an alternative approach using
undirected, content-based routing.

The pervasive computing landscape will involve vast
numbers of the four component types. A scalable
supporting infrastructure will be required, in order to
enable the dynamic discovery of software components
and information; the dynamic interconnection of
components; the sensing, interpretation and dissemination
of context; the mobility and adaptation of components;
and the rapid development and deployment of large
numbers of software components and user interfaces.

3. Challenges

The four component types that make up our conceptual

model of pervasive computing each present challenges,
which place requirements on both the supporting
infrastructure and the manner in which software
components and user interfaces are constructed. These
challenges are characterized in this section.

3.1 Devices

Two device-related challenges must be addressed by
the pervasive computing infrastructure; these are the wide
differences between heterogeneous device types and the
problems caused by device mobility.

3.1.1 Device heterogeneity. We believe that
heterogeneity in computing systems will not disappear in
the future, but instead will increase as the range of
computing devices widens. Devices in a pervasive
computing environment will include sensors and actuators
that mediate between physical and virtual environments;
embedded devices in objects such as watches and shoes;
home and office appliances such as videos, toasters and
telephones; mobile devices, such as handheld organizers
and notebooks; and traditional desktop machines.

Heterogeneous devices will be required to interact
seamlessly, despite wide differences in hardware and
software capabilities. This will require an infrastructure
that maintains knowledge of device characteristics and
manages the integration of devices into a coherent system
that enables arbitrary device interactions (for example,
between a mobile phone and a desktop workstation).

3.1.2 Device mobility. Mobility introduces problems
such as the maintenance of connections as devices move
between areas of differing network connectivity, and the
handling of network disconnections. While protocols for
wireless networking handle some of the problems of
mobility, such as routing and handovers, some problems

cannot be solved at the network level, as they require
knowledge of application semantics. It should be the role
of the computing infrastructure to cooperate with
applications in order to perform tasks related to device
mobility, such as management of replicated data in cases
of disconnection.

3.2 Software components

The responsibility of the pervasive computing
infrastructure with respect to applications includes
supporting application requirements such as context
awareness, adaptation, mobility, distribution and
interoperability; facilitating the rapid development and
deployment of software components; providing
component discovery services; and providing scalability.
This section addresses the challenges involved in meeting
these requirements.

3.2.1 Mobility and distribution. As users can be mobile
and able to exploit the capabilities of several devices
simultaneously, mechanisms will be required to enable
the mobility and distribution of software. These
mechanisms should be largely transparent to component
developers, who should not be concerned with program
and data migration or synchronization and coordination of
distributed components. The support for mobility will
need to go beyond the current support for code migration
provided by platforms such as the Java virtual machine
(JVM), as run-time migration in heterogeneous execution
environments will be required. Similarly, the support for
distribution will need to surpass that provided by
platforms such as CORBA, which only offer transparency
of distributed communication, and typically do not
address mobility, synchronization or coordination.

3.2.2 Context awareness. Invisibility of applications
will be accomplished in part by reducing input from users
and replacing it with knowledge of context. Context-
aware software components will exploit information such
as the activities in which the user is engaged, proximity to
other devices and services, location, time of day and
weather conditions. Knowledge of context will also be
required to enable adaptation to changing environmental
conditions, such as changing bandwidth and input and
output devices, which can be brought about by mobility.

The infrastructure for pervasive computing should
support context awareness by facilitating the gathering of
information from sources such as sensors and resource
monitors; performing interpretation of data; carrying out
dissemination of contextual information to interested
parties in a scalable and timely fashion; and providing
models for programming context-aware applications. A
very challenging aspect is interpretation, which involves
steps such as integration of data from different sources
(for example, combining height and horizontal position

into a three dimensional position); inference (for example,
“Bob is in the meeting room and Alice is in the meeting
room, therefore a meeting between Bob and Alice is
taking place”); prediction based on context history;
resolution of inconsistencies between context data from
different sources; and provision of estimates of the
accuracy of contextual information.

3.2.3 Adaptation. Adaptation is required in order to
overcome the intrinsically dynamic nature of pervasive
computing. Mobility of users, devices and software
components can occur, leading to changes in the physical
and virtual environments of these entities. Moreover,
applications can be highly dynamic, with users requiring
support for novel tasks and demanding the ability to
change requirements on the fly.

It should be the role of the infrastructure for pervasive
computing to facilitate adaptation, which may involve
adapting individual software components and/or
reconfiguring bindings of components by adding,
removing or substituting components. Adaptation may be
done in an application-aware or application-transparent
manner, as described by Noble et al. [5].

Dynamic adaptation can involve complex issues such
as managing the adaptation of software components that
are used simultaneously by applications with different
(and possibly conflicting) requirements, and maintaining
a consistent external view of a component that has
behavior that evolves over time.

3.2.4 Interoperability. Today, application developers
use a wide range of programming models, languages and
development environments, and we foresee this
heterogeneity continuing into the future, particularly as
the range of uses for computing technology expands.
Thus, the infrastructure for pervasive computing must
support diverse types of software component. The
infrastructure will be required to integrate software
components, which may reside in fundamentally different
environments (such as home or office computing
environments), into compositions that can successfully
interact and cooperate to achieve common tasks.

As applications in pervasive computing environments
will be required to respond to novel tasks and situations,
applications will increasingly be formed dynamically
from available software components. This will require
dynamic interoperability at the component level, in
addition to interoperability that overcomes the
heterogeneity of the environment and of components.
Components will need to be capable of dynamically
acquiring knowledge of each other’s interfaces and
behavior, in order to learn how to interact with previously
unknown components.

3.2.5 Component discovery. The issue of discovery of
software components has been addressed in various

research areas. In open distributed computing, resource
discovery is supported by a type management repository,
which maintains descriptions of service interface types,
and a trader, which is aware of instances of service types.
Resource discovery is also addressed by network
directory protocols such as LDAP, and in other
technologies such as Jini and Bluetooth. As the problem
of resource discovery has been solved differently in each
of these domains, the main challenge in pervasive
computing environments, which are characterized by their
heterogeneity, will be to integrate the different
approaches into a single scalable resource discovery
system by mapping requests between resource discovery
domains.

3.2.6 Development and deployment. The number and
diversity of software components that will be required in
pervasive computing environments will necessitate
methods for their rapid development and deployment.
Rapid development will be, in part, enabled by feature-
rich infrastructure that obviates the need for application
developers to be concerned with tasks such as adaptation,
context gathering and management, resource discovery,
distribution management and communication between
distributed application components. Rapid development
of specialized applications, such as agents, can be
enhanced further by the development of special-purpose
languages that enable applications to be specified at a
very high level of abstraction. Several attempts to create
such languages are already underway; one example is the
XML-based Mobile Document Application Language
(MoDAL), developed by IBM [6], for specifying small
document-based applications for information appliances.

Infrastructural support for rapid application
deployment can be achieved through the provision of
execution environments into which applications can be
placed without regard for configuration or adaptation.
Rapid deployment of applications in distributed
environments is already supported in a limited fashion by
platforms such as the JVM, which can dynamically load
and execute programs. However, these platforms do not
yet meet the needs of heterogeneous environments, which
require support for a broad range of component types,
scalability, and dynamic configuration and adaptation of
components.

3.2.7 Scalability. One of the features of pervasive
computing is the increasing ubiquity of devices and
software. Thus, the infrastructure, the interactions
between components, and the software services provided
in the pervasive computing environment must all be
scalable. A powerful software platform on which
scalable, fault-tolerant, distributed components can be
built will be essential. Such platforms are already being
developed; one such example is the Ninja service
architecture [7] which is discussed in Section 4.2.

3.3 Users

Users in pervasive computing environments can be

mobile and have computing sessions distributed over a
range of devices. The infrastructure’s role with respect to
users should be to maintain knowledge of their context
and to manage tasks related to their mobility.

3.3.1 Context. The infrastructure should maintain
context data related to users, including their capabilities,
preferences, current activities and active computing
sessions. The uses of user-related context include
allowing applications to provide adaptation to user
requirements, and enabling the amount of input that
applications require from users to be reduced. For
example, with knowledge that a user is engaged in driving
a car, an application can ensure interaction is carried out
through a speech-based interface, rather than a screen-
based one, in order to enable the user to focus on the road.

Information about users’ computing sessions,
including details about applications and the devices on
which these applications reside, can be used to manage
the application migration and adaptation that frequently
must occur when a user is mobile. This is discussed in
the following section.

3.3.2 Mobility. User mobility between devices should be
supported by enabling automated migration (or re-
instantiation in a new location) of application
components. The tasks of identifying the need for
application migration and then carrying out the migration,
as described in Section 3.2.1, should ideally be performed
by the computing infrastructure in a manner that makes
the migration as transparent as possible to the applications
concerned.

3.4 User interfaces

Users in pervasive computing environments will
demand ubiquitous access to their computing
applications, which will create a requirement for
universally available user interfaces. Device
heterogeneity will introduce a further requirement for
user interfaces that are highly adaptable. Finally, the
diminishing amount of user interaction with applications
(brought about in part by the increasing ratio of
applications to people) and the changing nature of the
interactions (brought about by computing becoming
situated in mobile and other novel situations) will
mandate the creation of new types of user interfaces.

3.4.1 Universal Interfaces. The need for universally
available user interfaces will create a requirement for new
methods of programming user interfaces that do not make
assumptions about the available input and output devices.

GUI interfaces that are designed for use with a screen,
pointing device and keyboard will no longer be broadly
useful in future computing environments, as devices with
novel input and output mechanisms (for example, touch
screens and gesture recognition) will become increasingly
common.

In order to provide scalable support for universal
interfaces, it will be necessary for application
programmers to write generic interfaces that allow the
semantics of user interaction to be specified without
reference to rendering or input modalities. Early efforts
in this area are already emerging, such as MoDAL [6]
which enables graphical user interfaces to be specified
independently of platform and instantiated with regard for
the context (including user preferences) at execution time.

3.4.2 Adaptation. User interfaces for pervasive
computing environments must be highly adaptable in
order to respond to changes in the available input and
output devices caused by mobility; to other changes in the
context in which the application is used (for example,
when the user switches from working at a desk to driving
a car); and to novel application behaviors that are created
in a dynamic fashion from available components.

One of the challenges of providing user interface
adaptation lies in ensuring that adaptation preserves a
consistent view of an application. The user should have a
uniform mental model of an application regardless of
whether the user is interacting with a speech-based
interface or a graphical one. Consistent adaptation is
particularly challenging when the interaction paradigms
are completely different. For example, interactions in
gesture-based interfaces occur over a continuous period,
whereas interactions in a mouse-driven interface occur at
discrete points in time, which makes it difficult to map
between the two forms of input [8].

Another challenge lies in dynamically coordinating the
use of heterogeneous collections of input and output
devices to form a single user interface (for example, when
a control interface for a video conferencing system is
formed using a user’s PDA as an input device and the
videoconference screen as the output device).

3.4.4 Usability. User interfaces for pervasive computing
must be carefully designed with several factors in mind.
First, the ergonomics of the interface must be designed to
keep the user’s attention focused on the task at hand
rather than on peripheral matters; that is, the interface
should not be distracting. Second, the user interface
should be rewarding and enjoyable to use. Third, the user
interface must allow novel types of interaction that will
become more common as computing tasks become
increasingly ubiquitous, such as delegation of tasks and
provision of guidance to software agents. Finally, user
interfaces should be designed for ordinary people, rather
than just for technologists [1].

4. Discussion of existing approaches

We have described four classes of challenges involved

in realizing pervasive computing. These are summarized
in the leftmost two columns of Table 1. The challenges
have been partially addressed by existing research, a
sample of which is surveyed and evaluated in this section.
The discussion is partitioned according to the primary
aims of the research efforts; note that overlaps exist
between some of the categories (notably, between service
platforms and appliance environments).

4.1 Context Models

Many context models have been developed to support

context-aware and adaptive systems and applications.
These primarily address challenges 2.2 and 3.1 in Table 1
by providing context representation, interpretation and
dissemination.

The Sentient Computing project is concerned with
supplying context information to applications, with
particular focus on location information [9]. The location
of mobile objects, such as people and equipment, is
tracked by devices known as Bats (a successor to the
earlier active badges), which communicate with base
stations by ultrasound. Other context information is
gathered by resource monitors, which track resources
such as CPU, memory and bandwidth.

Context is associated with a logical model of the
physical world. In this model, real world entities are

captured as objects that have types, names, capabilities
and properties, including static and dynamic context.
Objects are stored in a persistent database and queried
through a CORBA proxy. Additionally, applications can
receive notifications of location-related events from a
spatial monitoring service, which performs interpretation
of location data and detects important events defined by
containment rules.

One of the drawbacks of the Sentient Computing
framework is its focus on location. While the framework
provides interpretation and event notification of location
changes, its support for other types of context is limited to
the ability to query the information via the proxy server.
In order to support the rich context requirements of
pervasive computing software, the means to apply context
interpretation to arbitrary types of context are required.

Hewlett-Packard’s Cooltown project proposes a Web-
based model of context. In this model, entities (people,
places and things) have Web representations that can be
retrieved using a URL [10]. An entity’s Web
representation captures both static and dynamic aspects of
context, including relationships with other entities and
sets of services associated with the entity. One of the
primary aims of the model is to enable adaptation of Web
content according to user context. However, the potential
uses of the framework are much broader.

Location awareness is based around the concept of a
space. Beacons wirelessly transmit URLs corresponding
to spaces, enabling devices near the beacons to discover
and access their local spaces. Spaces are accessed
through portals, which are responsible for providing

Table 1. Primary areas of focus

Challenge

Issue

Context
Models

Service
Platforms

Appliance
Environments

Pervasive
Computing

Environments

1.1 Support for device heterogeneity 1. Support for
devices 1.2 Support for device mobility

2.1 Management of application mobility
and distribution

2.2 Support for context-aware components
2.3 Support for adaptation
2.4 Support for dynamic interoperability of
components

2.5 Support for component discovery
2.6 Support for rapid component
development and deployment

2. Support for
software
components

2.7 Support for scalability

3.1 Management of user context 3. Support for
users 3.2 Support for user mobility

4.1 Support for universal interfaces
4.2 Management of user interface
adaptation

4. Support for
user interfaces

4.3 Support for usability

access control and a gateway to the space’s services. A
space manager performs tracking of the devices located
within the space at any point in time and generation of
dynamic Web pages that reflect the current context.

The Cooltown context model has several limitations.
First, it does not address the means of specifying context,
but instead allows arbitrary Web descriptions, which
renders machine processing of context difficult.
Additionally, interpretation of context and subscription to
context events are outside the scope of the model.

Unlike the Sentient Computing and Cooltown projects,
the Context Toolkit project [11] focuses on programming
with context rather than context representation. The
Context Toolkit has the aim of providing abstractions for
separating the gathering and processing of context from
the use of context. The toolkit comprises three types of
component: context widgets, which acquire context data
from sensors; interpreters, which perform processing of
context data, such as abstracting high-level information
about a person’s location from raw location coordinates;
and aggregators, which combine context data from
multiple sources.

None of the work carried out on context to date is
adequate to satisfy the requirements of pervasive
computing. The ideas of context modeling found in the
Sentient Computing and Cooltown approaches, and those
of context processing found in the Context Toolkit must
be united into a scalable framework, and better
programming models for context-aware applications,
which support rich types of context-awareness and
adaptation, must be created.

4.2 Service platforms

Service platforms typically aim to facilitate the rapid

creation and deployment of services (challenge 2.6 in
Table 1), while also offering dynamic service discovery
(2.5), including the ability for clients to learn the
capabilities of services (partially addressing 2.4). Some
platforms also address issues of scalability (2.7) and
adaptation (2.3).

Jini [12] is a service framework based on Java and
RMI, which supports flexible, easily administered
environments in which services can be added and
removed dynamically. It offers a service model based on
three components: an infrastructure for federating
services in a distributed environment, a programming
model for distributed services, and a set of system
services, including a lookup service used by clients to
locate required services.

MOCA [13], like Jini, aims to provide a dynamic
service environment; however, it focuses on satisfying the
requirements of mobile computing environments. MOCA
provides dynamic service discovery (2.5), limited forms
of adaptation to changes caused by mobility, such as
disconnection from the mobile network (1.2, 2.3), support

for device heterogeneity (1.1), and location-transparent
access to services. The framework consists of two
components that reside on the mobile device: the service
registry, which is a repository of information about
available services, and a set of core services that provide
local file caching, file loading and application
management.

MOCA’s model of locating both service discovery and
essential services on the mobile device was designed with
disconnected operation in mind. Unfortunately, this
model places considerable resource demands on the
mobile device, rendering the framework unsuitable for
extremely resource-poor devices.

Jini and MOCA address service provision within
relatively small service environments, and ignore
scalability. The Ninja service framework, in contrast, is
designed for large-scale Internet services [7]. It provides
a service platform that delivers scalability, fault-tolerance,
distribution and composability of services. Services are
written in Java, as in Jini and MOCA, according to a
well-defined programming model.

Services are executed on top of the vSpace platform
within cluster computing environments known as bases.
Dynamic deployment of a service is performed by
uploading the service into a base. Service discovery is
supported by a hierarchical arrangement of service
discovery services.

In addition to the service platform, Ninja offers
adaptation to meet the needs of heterogeneous client
devices. Adaptation is performed by active proxies that
lie between the Internet server and the client, and can
overcome problems such as disconnection, limited
bandwidth, limited processing capacity on the client
device and disparities in protocols or data formats used by
clients and servers. Thus, Ninja is able to address
challenges 1.1, 1.2 and 2.3.

While, Ninja and MOCA, and to a lesser extent, Jini,
satisfy some of the requirements of pervasive computing,
many other issues remain beyond their scopes, including
context-awareness and user and user-interface issues.

4.3 Appliance Environments

The aim of models for appliance computing is to

support interoperability among collections of appliances.
HAVi [14] is a standard for home appliances (designed
by a consortium of industry players in the appliance
market) consisting of a set of APIs, services, and a
standard for communication. HAVi’s primary goal of
providing a dynamic service environment in which
software components can discover and interact with
services closely resembles the goals of service
frameworks such as Jini.

HAVi provides mechanisms for devices to discover,
query and control other appliances on the home network,
and provides system services such as message and event

transfer. Application interfaces are specified in a
programming language-independent IDL, and
applications can be programmed in a variety of
languages, with Java being the language of choice for
applications that require portability (such as device
controllers that can be uploaded and executed on a range
of devices).

HAVi supports universal appliance controls in the
form of Java applets (havlets). Control applets can be
loaded from appliances into a device employed by the
user as a remote control. This provides the user with
uniform access to the appliance regardless of which
device is used for control.

Universal user interfaces are also addressed by an IBM
research project aiming to enable a user to employ a
single PDA-like device, called a Universal Information
Appliance, to interact with all services [6].

Instead of using Java applets to provide remote
interfaces, the IBM approach relies on MoDAL, a new
high-level application and user interface description
language based on XML. MoDAL applications are
uploaded dynamically into a user’s device from their
corresponding services, and are tailored to the user’s
device and preferences.

MoDAL applications are supported by an
infrastructure comprising a MoDAL engine (the
execution environment for applications, similar in
purpose to the JVM), a local database responsible for
storing data such as user preferences and passwords, and
a communication middleware based on a shared tuple
space (TSpaces). The benefits of the communication
model are that it offers distribution transparency, can
support a range of interaction types, including event and
stream interactions, and removes the need for resource
discovery. Unfortunately, unless communication based on
distributed tuple spaces can scale to large systems, which
remains to be demonstrated, it is unsuitable for invisible
computing environments.

The primary challenges addressed by IBM’s universal
information appliance infrastructure and HAVi are
dynamic interoperability of components (2.4) and
dynamic component discovery (2.5). Additionally, they
address the provision of appliance interfaces that are
universally available regardless of computing device
(4.1). At present, however, they consider only graphical
user interfaces, whereas pervasive computing will
demand a much broader range of interface types.

4.4 Pervasive Computing Environments

This section surveys other work that broadly addresses

the pervasive computing goal of providing “anytime,
anywhere” computing by decoupling users from devices
and viewing applications as entities that perform tasks on
behalf of users. There are numerous ongoing projects in
this area, including PIMA [15], Aura and Portolano [3].

PIMA is founded on the idea that the application
model for pervasive computing must decouple application
logic from details that are specific to the run-time
environment, such as specific services and user interface
renderings. Application functionality is modeled in a
generic fashion as tasks and sub-tasks joined together by
navigation mechanisms.

The PIMA project has several ongoing research
thrusts. These include the creation of an application
development environment that supports the device-
independent application model described above
(challenge 2.6) and the construction of service
environments that provide applications with access to
local services (2.5). PIMA also aims to address
application adaptation (2.3), including rendering for
specific devices (4.2) and dynamic application
apportioning (that is, determining the split of functionality
between client and server at execution time according to
context). Finally, PIMA aims to create mechanisms that
allow applications to learn how to interact with previously
unknown services at execution time (2.4).

The Aura pervasive computing project is the successor
to the earlier Coda and Odyssey projects on adaptation.
Like PIMA, Aura proposes a programming model for
task-based computing [16]. In this model, tasks are
viewed as compositions of services. Both tasks and
services have explicit representations. Services are
described by virtual service types, which define
functional, state and configuration interfaces and
dependencies upon other services. Virtual service types
can be related through inheritance, and can also be
composed to form new virtual services. Tasks are top-
level compositions of services that are specified as flows
that decompose tasks into steps of subtasks or primitives
(actions carried out by services).

Tasks are instantiated by a protocol that is responsible
for gathering information about available services,
selecting suitable services to carry out tasks and binding
them together, and, finally, performing configuration and
initialization of services. A coordination protocol
manages the plugging and unplugging of services in
response to resource changes. Tasks are also managed by
a third protocol responsible for task migration, obtaining
consistent snapshots of task state, and managing
replication and consistency.

Like PIMA, Aura addresses the development and
deployment of applications (2.6), application adaptation
(2.3), and dynamic service discovery (2.5).

The Portolano project [3], in contrast to PIMA and
Aura, primarily addresses issues of infrastructure rather
than of software development. The Portolano group
proposes the use of data-centric networks, an approach
based on active networks in which data packets are
responsible for traversing the network and obtaining
required resources inside the network. The group is also
considering infrastructural issues such as service

discovery and proxy architectures that support resource-
poor devices, and has an interest in applications such as
location tracking of objects, gathering of data from
sensors and applications of embedded Web servers. The
Portolano research currently remains in its early stages.

4.5 Discussion

This section has surveyed four active research areas

that address some, but not all, of the requirements of
pervasive computing. The main goals and focuses of
each of the research areas are summarized in Table 1.
The table demonstrates that, while some of the
ingredients for pervasive computing infrastructures are
present in existing research, a considerable challenge
remains in producing solutions to problems that have so
far been little addressed, and in constructing a computing
infrastructure that integrates solutions to all of the
challenges we have described.

5. Research Agenda

In summary, pervasive computing has the following

requirements:
1. the ability to dynamically discover and compose

software components in frequently changing
environments

2. the ability to support increasingly autonomous and
invisible applications through the provision of rich
context information that is gathered from a wide
range of sources, interpreted, and disseminated in a
scalable fashion to interested parties

3. the ability to rapidly develop and deploy flexible
software components that are adaptive and context-
aware and, additionally, satisfy special requirements
such as scalability and fault-tolerance

4. the ability to integrate heterogeneous computing
environments, which have differing communication
protocols and services (such as discovery
mechanisms), into coherent pervasive computing
systems that enable the formation of dynamic
interactions between components

5. the ability to construct novel types of user interfaces
that are universally available, regardless of the input
and output capabilities of the available devices, that
are sensitive to situation, and that are non-distracting

These requirements are being addressed individually in

a broad range of research disciplines, including mobile
and distributed computing, software engineering,
collaborative work, context-awareness, wearable
computing and HCI; a sample of this work was
characterized in Section 4. However, there remain
considerable hurdles to realizing the pervasive computing
vision. We believe that several research directions, in
particular, must be pursued.

First, there is a need for new approaches to software
design and development. Banavar et al. have described a
programming model for pervasive computing in which
generic programs are created without reference to device
or service characteristics [15]. We believe that this model
is not sufficient for invisible computing, in which
applications are reliant on rich knowledge of context in
order to function autonomously. Therefore, we advocate
the development of new models for programming with
context. Previous work on the gathering, interpretation
and representation of context must be extended by deeper
investigation into the use of context data. Abstractions of
application context-awareness and adaptation must be
formed which can serve as the basis for new application
programming models and languages. These issues are
currently the focus of our own research group, which is
constructing a comprehensive framework for context-
aware computing that supports concerns through from
context gathering and interpretation to programming
issues. This framework is being developed in conjunction
with Mercury, an application supporting context-aware
communication in pervasive computing environments,
which serves as a testbed for our ideas about context-
aware computing.

Second, a scalable framework for overcoming
heterogeneity and enabling dynamic interactions between
software components is required. This framework must
build upon and broaden the scope of existing work on
creating interoperability between computing
environments such as CORBA and DCOM. It must
address device and software heterogeneity, as well as
heterogeneity of components such as networking
infrastructures, middleware platforms and service
discovery mechanisms. In addition, mechanisms are
needed that enable software components to respond to
novel situations by dynamically learning the interfaces
and behaviors of other components.

Finally, further investigation into the user interface and
usability issues of pervasive computing is required.
Current research in the HCI arena is addressing the
construction of user interfaces for innovative devices,
including information appliances and mobile computers.
From this work must emerge new models of user
interaction to replace the models, centered on desktop
computing, that have been widely used in the past.

6. Concluding Remarks

In this paper, we have presented a vision of a future

computing landscape characterized by the ubiquity of
computing devices, the autonomy, dynamicity and
context-awareness of computing applications and the
heterogeneity of system components. We have provided
a discussion of the challenges associated with such a
vision, framed around our conceptual model of pervasive
computing which encompasses devices, users, software

components and user interfaces. Additionally, we have
evaluated the current state of research and the degree to
which it satisfies the requirements of pervasive
computing. We have concluded with an agenda for future
research that highlights the need for further investigations
into context-awareness and adaptation; integration
frameworks that overcome system heterogeneity; and user
interface models for future computing environments.

7. References

[1] Norman, D., “The invisible computer: why good products
can fail, the personal computer is so complex, and information
appliances are the solution”, MIT Press, 1998.

[2] Dey, A. and Abowd, G., “Towards a Better Understanding
of Context and Context-Awareness”, Workshop on the what,
who, where, when and how of context-awareness at CHI 2000,
April 2000.

[3] Esler, M. et al., “Next Century Challenges: Data-Centric
Networking for Invisible Computing”, Proceedings 5th Annual
Intl. Conference on Mobile Computing and Networking
(MobiCom’99), August 1999.

[4] Arnold, D. et al., “Discourse with Disposable Computers:
How and Why you will talk to your tomatoes”, Usenix
Workshop on Embedded Systems, March 1999.

[5] Noble, B. et al., “Agile Application-Aware Adaptation for
Mobility”, Proceedings 16th ACM Symposium on Operating
Systems and Principles, October 1997.

[6] Eustice, K. et al., “A Universal Information Appliance”,
IBM Systems Journal, Vol. 38, No. 4, 1999.

[7] Gribble, D. et al., “The Ninja Architecture for Robust
Internet-Scale Systems and Services”, Computer Networks,
Special Issue on Pervasive Computing, June 2000.

[8] Benyon, D., “The new HCI? Navigation of Information
Space”, To appear, Special Issue of Knowledge-Based Systems.

[9] Harter, A. et al., “The Anatomy of a Context-Aware
Application”, Proceedings 5th Annual Intl. Conference on
Mobile Computing and Networking (MobiCom’99), August
1999.

[10] Kindberg, T. et al., “People, Places, Things: Web Presence
for the Real World”, http://www.cooltown.hpl.hp.com, Hewlett-
Packard Labs Technical Report HPL-2000-16, 2000.

[11] Dey, A., Salber, D. and Abowd, G., “A Context-based
Infrastructure for Smart Environments”, Proceedings 1st Intl.
Workshop on Managing Interactions in Smart Environments
(MANSE’99), December 1999.

[12] Waldo, J., “Jini Technology Architectural Overview”,
White Paper, Sun Microsystems, Inc., January 1999.

[13] Beck, J., Gefflaut, A, and Islam, N., “MOCA: A Service

Framework for Mobile Computing Devices”, Proceedings
International Workshop on Data Engineering for Wireless and
Mobile Access, August 1999.

[14] Lea, R., Gibbs, S., Dara-Abrams, A. and Eytchison, E.,
“Networking Home Entertainment Devices with HAVi”,
Computer, Vol. 33, No. 9, September 2000.

[15] Banavar, G. et al., “Challenges: An Application Model for
Pervasive Computing”, Proceedings 6th Annual Intl. Conference
on Mobile Computing and Networking (MobiCom 2000),
August 2000.

[16] Want, Z. and Garlan, D., “Task-Driven Computing”,
Technical Report, CMU-CS-00-154, School of Computer
Science, Carnegie Mellon University, May 2000.

