
Towards a Common Context Model for
Virtual Community Applications

J. Indulska
�
, K. Henricksen

�
, T. McFadden

�
, and P. Mascaro

�
�

School of Information Technology and Electrical Engineering,
The University of Queensland
Email: jaga@itee.uq.edu.au�

Distributed Systems Technology Centre
Email:

�
kmh,mcfadden,mascaro � @dstc.edu.au �

Abstract. Instrumentation of home appliances and devices with sensors and actua-
tors enables the creation of smart, context-aware environments which can intelligently
support users in a variety of tasks, including tasks that support independent living of
the elderly. This paper describes how the complexity associated with designing and
implementing context-aware applications can be reduced through both context reuse
and programming methods that allow context evaluation to be decoupled from appli-
cations. The paper describes a family of applications for smart homes that fall into the
category of virtual community applications for the elderly, and demonstrates that these
applications can be supported by a common, evolvable set of context and preference
models.

1 Introduction

Homes are equipped with a variety of appliances and devices, and can be further instrumented
with sensors and actuators. This, coupled with a variety of wired and wireless communication
technologies, creates a heterogeneous computing and communication infrastructure suitable
for enabling the creation of context-aware home environments which can intelligently sup-
port users in a variety of tasks. This support may range from hiding heterogeneity of devices
and communication technologies (e.g., by providing common and self-explanatory interfaces
to entertainment units and appliances) to complex support for independent living of the el-
derly. The latter may not only include seamless control of sensors, actuators, appliances and
other devices, but also a variety of context-aware applications supporting daily activities (and
remote help with these activities from family members or the local community), health mon-
itoring, and building of virtual communities [1, 2].

Due to the variety of user activities which should be intelligently supported by a smart
home, and the heterogeneity of devices, communication technologies and interaction proto-
cols between devices, most smart home applications require a rich set of context information
in order to re-configure and self-adapt when the context or user preferences change. Such

�
The work reported in this paper has been funded in part by the Co-operative Centre for Enterprise Dis-

tributed Systems Technology (DSTC) through the Australian Federal Government’s CRC Programme (Depart-
ment of Education, Science and Training).

2 J. Indulska, K. Henricksen, T. McFadden and P. Mascaro

context information may include information about device characteristics, device location,
user location, and user activity.

Many challenges in designing smart home environments are akin to those faced when
designing pervasive systems in general. Mobility of users, a variety of user activities, hetero-
geneous communication technologies and heterogeneous devices introduce similar require-
ments for context-awareness as those seen in other application domains of pervasive systems.
Such systems require models for describing and evaluating context, adaptability methods
which can be applied in response to context changes (or context-aware applications which
can adjust their behaviour when notified about context changes), and appropriate middle-
ware/infrastructure responsible for context gathering, management, evaluation and dissemi-
nation [3, 4].

It is commonly acknowledged that the design and implementation of context aware appli-
cations are difficult tasks, and that new approaches are required which can support developers
of context-aware applications. Context-aware applications often need to evaluate similar con-
text facts and, more often, contextual situations built from context facts. Therefore, techniques
that allow reuse of situations have the potential to considerably simplify the development of
new applications. It should also be noted that most of the current context-aware applications
have context evaluation hardwired into the application logic, which implies that any changes
in the context model or user preference model require re-programming of the applications. If
context and preference evaluation logic can be separated from the applications it is possible
to create evolvable applications which will work with modified types of context information
or user preferences.

In this paper, we discuss applications for smart homes that fall into the category of vir-
tual community applications, and demonstrate that these applications can be supported by
a common, evolvable set of context and preference models. In defining the common mod-
els, we draw on our previously developed modelling techniques [5, 6], which are sufficiently
rich to allow us to capture diverse types of context information, including imprecise, incom-
plete and ambiguous information, and to describe context-dependent user requirements and
preferences. We demonstrate benefits that arise from context and preference reuse, which in-
clude reduced complexity associated with constructing new virtual community applications,
reduced effort required for customisation and fine-tuning of applications, and more consistent
behaviour across a user’s set of applications.

The structure of the paper is as follows. Section 2 shows example virtual community ap-
plications and provides an informal description of the context information needed for such
applications. This description provides insight into the potential for context reuse when build-
ing such applications. Section 3 introduces a formal common context model for the applica-
tions, while Section 4 presents a common preference model. Section 5 briefly describes how
our infrastructure for context-aware computing allows evolution of the context and prefer-
ence models without re-programming applications that rely on these models, and Section 6
concludes the paper.

2 Example virtual community applications

The virtual community applications that we consider have diverse goals, but are primarily
concerned with providing support for independent living in communities of elderly people.
They include applications that support:

Towards a Common Context Model for Virtual Community Applications 3

� assistance for the elderly with everyday tasks by remote family or community members;

� dynamic formation of groups of people who are interested in activities such as shopping
or playing chess, based on their preferences and availability; and

� awareness of the activities of others in nearby smart homes using abstract visual repre-
sentations, helping to minimise isolation and provide assurances of others’ well-being.

2.1 Selected applications

The following three example applications have been selected for discussion in this paper:

1. Instant communication with a family member, friend or health worker, achieved using
context-aware choice of communication channel (telephone, SMS, e-mail, etc.) accord-
ing to the current activity, devices (and their communication modes) and preferences of
communicating persons.

2. Servicing of sensor-based alarms/events by family members, community members or
health workers. Any event/alarm which requires external help (e.g., a burnt out light bulb
or the elderly person lying on the floor) is evaluated based on the current context and
policies/preferences to determine who should be informed. Context-aware communica-
tion (described above) is used to deliver information about the event.

3. Organisation of social activities (e.g., shopping, theatre, or a bridge game). When an
elderly person wants to organise a social activity, context information is used to determine
which people are preferred for the activity, and context-aware communication is used to
contact them.

An informal characterisation of the context information required by these three applica-
tions is presented in the following subsection.

2.2 Required context information

The simplest of the three applications, application 1, requires context information about fam-
ily members, health workers, and community members, including information about their
activities, locations, and communication devices. Context information about devices should
include modes of operation (types of communication channel) and location. The informa-
tion about the elderly person’s communication devices and the callee’s activities and devices
are the basic context facts used in this application. These basic facts must be supported by
additional information about both the elderly person’s and the callee’s preferences for com-
munication devices and communication modes.

Application 2 is more complex as it requires all of the context information used by ap-
plication 1 (to support context-aware communication), as well as information about a variety
of sensors available in the house, their types and states, and their positions within the house.
Context facts (e.g., sensor states) can be used to define more complex contextual situations
(expressions built from context facts). One example is an emergency health situation (e.g.,
person lying on the floor in the kitchen and not moving), which needs to be deduced from
the states of several sensors. Such situations need to trigger some help actions, and therefore

4 J. Indulska, K. Henricksen, T. McFadden and P. Mascaro

the set of preferences defined for application 1 also needs to be extended for application 2 to
include preferences about recipients of alarms or notifications about particular situations.

Application 3 requires all of the context information defined for application 1, as well as
additional information about people’s hobbies and interests and preferred social groups.

2.3 Other applications

The next section presents a formal context model for the described three applications, dis-
cussing reuse of context facts and context situations in the applications. Due to space limita-
tions we cannot formally show that this context model can be used for a much larger number
of virtual community applications. However, even from the informal model described in the
previous subsection, it can be clearly seen that further applications of this type can be based
on the same context model (with some small extensions). Additional applications that we
have considered include:

� An application providing cooking advice from a family member or health worker. This
application may be triggered by the elderly person or the smart home (the latter in the
case when a medical evaluation of the cognitive abilities of the elderly shows that the
person needs help with particular activities in the kitchen). It is assumed that there is a
video camera allowing the helping person to observe activities in the kitchen. When the
application is triggered, a person able to help is found based on the current context, and
context-aware communication is used to communicate the request.

� An application supporting a distributed activity (e.g., remote bridge game). The applica-
tion uses context-awareness to adapt to location/device changes of the participants.

� Ambient communication which provides awareness of the activities of others. When some
community members are involved in particular popular activities (e.g., walking a dog),
others are informed using a mode of delivery (e.g., a visual representation on an “ambient
community screen” or a scrolling message at the bottom of a TV) that is appropriate to
the current context and the recipient’s preferences.

3 Common context model

A common model of context fact types for applications 1-3 is presented in Figure 1. The nota-
tion used is discussed in [5], and is an extension of the Object Role Modeling (ORM) notation
[7]. The context information has various origins and quality. It can be sensed from physical
or logical (software) sensors, derived from other context information or defined by users. It is
important that context models address the issue of context imperfection, incompleteness and
ambiguity, as this allows developers to create robust and reliable context-aware applications
that are able to deal with conflicting context information or temporary lack of sensor data.
The presented model captures context facts (e.g., person using device, home contains room)
of various types (static, profiled, derived, sensed), and also quality, histories and relationships
of context information.

Based on the defined context facts, more complex situations can be described. Both facts
and situations can be reused in other applications. Figure 2 shows some example situations
from application 1 which are reused in applications 2 and 3. Figure 3 presents examples of

Towards a Common Context Model for Virtual Community Applications 5

state
set to named

actuator
Named value

state
has named

(name)
Named state

sensor
Named value

Integer value
sensor

(name)

[]

[]

[]

[]

[]

[]

[]

*

(float)+

has coordinates 1

has coordinates 2

contains

has type

Room

(name)

has type

has bounds

has address occupied by

location

(fixed/mobile)

using

network
supports

has interest in

(timestamp)

type (name)

has type

state
has integer

actuator

(name)
Network type

Space

has last known
location

has current

[]

s

s

s

Actuator

a

s

s
s

s s

*

a

a

Legend

state
set to integer

float state
set to

(name)

(id)

engaged in

Fact type

Object type

Temporal (historical) fact type

Snapshot uniqueness constraint

[]

a

Subtype relationship (B subtype of A)

Quality annotation
Alternative role
Alternative uniqueness constraint

External uniqueness constraint
Uniqueness/key constraint

Static fact type
Sensed fact type
Derived fact type
Profiled fact type

s

*

fact type name

a

state
has float

near
near

Device
Mobility

(name)
Device type

has type

has mobility

has coordinates

Room type

(nr)+
Coordinate

has x coordinate

has z coordinate

has y coordinate
CoordinatesBounds

Type of place

contains

Communication
channel (id)

Relationship

Freshness

(address)
Street address

Home

(id)

Communication

(name)
Person

Activity
(name)

(int)+

Float value

actuator
Integer value

Float state

Integer state

sensor
Float value

Sensor

Channel type

has location

device
monitors

person
monitors

requires

channel
communication

has

related to

device

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

(representation)
Object name

B

A

u

u

u

Figure 1: Common context model.

additional situations which are required for application 2. The examples are of two kinds:
a situation which should trigger a home maintenance notification (when a light bulb is not
working) and a situation which should trigger a health emergency alarm (person lying down

6 J. Indulska, K. Henricksen, T. McFadden and P. Mascaro

� IsChildOf(child, parent):
PersonRelatedTo[child, parent, ‘relation.son’] or
PersonRelatedTo[child, parent, ‘relation.daughter’] or
PersonRelatedTo[parent, child, ‘relation.mother’] or
PersonRelatedTo[parent, child, ‘relation.father’]

� CanUseChannel(person, channel):
forall device

. CommunicationChannelRequires[channel, device]

. PersonNear[person, device] and
not exists sensor

. SensorMonitorsDevice[sensor, device]

. SensorHasType[sensor, ‘device.status.busy’]
and SensorHasNamedState[sensor, ‘device.status.busy.true’]

Figure 2: Example situations for application 1.

� RoomLightBurnedOut(room):
exists lightSwitch

. RoomContainsDevice[room, lightSwitch]

. DeviceHasType[lightSwitch, ‘light.switch’]
and ActuatorSetToNamedState[lightSwitch,‘light.on’]
and not DeviceHasSensedNamedState(lightSwitch, ‘light.on’)

� PersonHasFallen(person):
PersonIsHorizontal(person) and not PersonMoving(person, 5) and
exists coordinates

. PersonHasCoordinates[person, coordinates]

. exists space
. SpaceHasBounds[space, bounds]
. BoundsContainsCoordinates(bounds, coordinates) and

not SpaceHasType[space, ‘space.rest.position’]

Figure 3: Example situations for application 2.

and not moving and not in a typical rest space). The situations DeviceHasSensedNamed-
State (used in the RoomLightBurnedOut situation), PersonIsHorizontal and Per-
sonMoving (used in the PersonHasFallen situation) are omitted due to space limitations.

4 Common preference model

The goal of our preference model is to address a need for new techniques for capturing user
requirements and preferences in a context-dependent fashion. The model is based on the situ-
ation abstraction and enables candidate choices (such as communication channels that can be
used for interactions between users in the case of a communication application) to be rated
according to their suitability for the current context. Figure 4 presents example preferences
for the context-aware communication application, which forbid the use of communication
channels when the required devices are not available, and assign higher precedence to tele-
phone than email when the elderly person is contacting one of their children about a matter
of high priority. Application 2 can reuse these preferences, but also requires preferences that
describe how each type of event should be handled. Some examples are shown in Figure 5 for
the RoomLightBurnedOut and PersonHasFallen situations. Application 3 requires ad-

Towards a Common Context Model for Virtual Community Applications 7

� when not CanUseChannel(callee, channel) or
not CanUseChannel(caller, channel)

rate forbid

� when IsHigh(priority) and IsChildOf(callee, caller) and
IsTelephone(channel)

rate 1

� when IsHigh(priority) and IsChildOf(callee, caller) and
IsEmail(channel) and AtWork(callee)

rate 0.5

Figure 4: Example preferences for application 1.

� when RoomLightBurnedOut(room) and IsChildOf(contactPerson, occupant)
rate 1

� when RoomLightBurnedOut(room) and IsNurseOf(contactPerson, occupant)
and WorkingHours()

rate 0.8

� when RoomLightBurnedOut(room) and IsNurseOf(contactPerson, occupant)
and not WorkingHours()

rate forbid

� when PersonHasFallen(room) and IsNextOfKinFor(contactPerson, occupant)
rate oblige

� when PersonHasFallen(room) and IsDoctorFor(contactPerson, occupant)
rate oblige

Figure 5: Example preferences for application 2.

ditional preferences about social groups and activities, but these are not shown here because
of space limitations.

5 Support for context evolution

Context-aware applications have to be supported by an infrastructure able to gather, process,
and evaluate context and preference information. This infrastructure must provide powerful
context and preference query capabilities as well as notification mechanisms. We have de-
veloped an infrastructure for context-aware applications that meets these requirements, and
allows modelling and evaluation of context facts (and their quality, ambiguity, history, and
dependencies), situations and user preferences [5]. Context and preference information can
be discovered and reused in newly created applications. This support for reuse simplifies the
development of context-aware applications and allows for highly flexible behaviour.

Most of the current approaches to construction of context-aware applications assume that
context evaluation constitutes a part of the application logic. Applications built in this way
must be re-programmed for any changes in the context model (and/or preference model),
which means that they cannot gracefully evolve as the context and/or preference model
evolves.

The novel programming model supported by our software infrastructure [5] allows inser-
tion of context- and preference-dependent decision points into the normal flow of application

8 J. Indulska, K. Henricksen, T. McFadden and P. Mascaro

logic. These decision points are implemented as calls to an API which supports context-
dependent choice amongst sets of alternatives (e.g., available communication channels). User
preference information forms the link between the context and the chosen action(s). Prefer-
ences assign ratings to the alternatives according to the context and other application param-
eters, and, based on these ratings, the application selects and invokes one or more associated
actions. This solution is very flexible and enables modification and fine-tuning of context and
preferences when required (even at run-time).

6 Conclusions

This paper presented a common context and preference model designed for a family of
context-aware, virtual community applications which can support elderly persons. Our mod-
elling approaches allow us to capture a rich and diverse set of context information, including
ambiguous and otherwise imperfect information. They also enable reuse of context facts,
contextual situations built from facts, and user preferences. Moreover, our approach to pro-
gramming context-aware applications separates the application from the underlying context
and preference information, allowing the latter to be easily evolved over time to support
changes in user requirements and environment resources (e.g., addition of new sensors) with
minimal impact on the application.

The presented virtual community applications require a rich set of contextual information
about a number of persons (the elderly, family members, friends, health workers and com-
munity members). Some of these types of context information naturally raise privacy con-
cerns, and, to address these, we are currently developing extensions to our context modelling
approach to incorporate ownership information and context-dependent privacy preferences
(expressed using the preference model described in this paper).

References

[1] E.D. Mynatt, J. Rowan, S. Craighill, A. Jacobs, Digital family portraits: Providing peace of mind for
extended family members, Proc. of the ACM Conference on Human Factors in Computing Systems (CHI
2001), Seattle, ACM Press, 333–340.

[2] M. E. Pollack, L. Brown, D. Colbry, C. E. McCarthy, C. Orosz, B. Peintner, S. Ramakrishnan, I. Tsamardi-
nos, Autominder: An Intelligent Cognitive Orthotic System for People with Memory Impairment, Robotics
and Autonomous Systems, 44(3-4), (2003), 273–282.

[3] Anind K. Dey, Daniel Salber, Gregory D. Abowd, A Conceptual Framework and a Toolkit for Supporting
the Rapid Prototyping of Context-Aware Applications, Human-Computer Interaction, 16(2-4), (2001),
97–166.

[4] Guanling Chen, Ming Li, David Kotz, Design and Implementation of a Large-Scale Context Fusion Net-
work, Proc. of the 1st International Conference on Mobile and Ubiquitous Systems: Networking and Ser-
vices (Mobiquitous), Boston, (2004).

[5] K. Henricksen, J. Indulska, A Software Engineering Framework for Context-Aware Pervasive Computing,
Proc. of the 2nd IEEE International Conference on Pervasive Computing and Communications (PerCom),
Orlando, (2004), IEEE Computer Society, 77–86.

[6] K. Henricksen, J. Indulska, A. Rakotonirainy, Modeling Context Information in Pervasive Computing
Systems, Proc. of the 1st International Conference on Pervasive Computing (Pervasive), F. Mattern, M.
Naghsineh (eds). Lecture Notes in Computer Science, Springer Verlag, LNCS 2414, (2002), 167–180.

[7] T. A. Halpin, Conceptual Schema and Relational Database Design, Prentice Hall, Sydney, 2nd edition,
(1995).

