
Multimedia Customisation Using an Event Notification Protocol

Ricky Robinson, Andry Rakotonirainy
School of Information Technology and Electrical Engineering
The University of Queensland, Brisbane, QLD 4072, Australia�

ricky, andry � @itee.uq.edu.au

Abstract

Online personalisation is of great interest to companies.
Event notification systems are becoming more and more
popular as a natural candidate to provide personalised ser-
vices. Although event notification protocols do not immedi-
ately spring to mind as the most sensible transport of real-
time streams, our approach does utilise a content-based
event notification protocol. In this paper we present an
architecture able to correlate and filter real-time multime-
dia streams using an event notification protocol (Elvin) and
the Real-Time Transport Protocol (RTP). We demonstrate,
through simple examples, how a MPEG-2 stream can be
customised to the user in real-time based on his or her sub-
scription. Such an architecture can serve as enabling tech-
nology to integrate, correlate and abstract different sources
of information such as discrete and continuous events.

1. Introduction

Today there exist some applications that allow users to
customise text based feeds to their interests. For exam-
ple, there are web sites that send regular updates and news
via electronic mail to their subscribers. Upon subscription,
users can select the subject categories they are interested
in, and any e-mail sent to them will contain only informa-
tion relevant to that user. There are also applications that
scrape news web sites such as CNN and Slashdot and scroll
the news items on a ticker-tape interface as the stories ap-
pear on the web site. This paper describes an architecture
in which real-time multimedia feeds, specifically MPEG-2
streams, can be customised in a similar way using the Elvin
[14] content-based routing protocol. It also shows how cor-
relation can be used to further enhance the user’s experience
and provide them with more choices.

Section 2 describes two motivating examples, Section 3
summarises related works. This is followed by an overview
of the existing technologies that we combined for use in this
architecture. Finally, Section 5 describes the proposed ar-
chitecture in detail and Section 6 gives some examples of
how a client application can interface with the architecture.

2. Motivating Examples
This section provides several diverse examples of the

way in which a client may use this architecture. Although
the examples differ somewhat, they all use the same simple
programming interface. Implementations of these examples
are provided in Section 6.
2.1. The User Knows the Channel

In this, the simplest use case, the user knows the name of
the TV channel he or she wishes to view. This corresponds
to the way in which TV and other resources are used today:
a person knows there is football on Channel 4 at the current
time, so they just turn on Channel 4. In this situation, the
only benefit this architecture provides over and above ex-
isting systems is that a TV channel may be relayed using
Elvin from several redundant Content Servers. If one of the
servers crashes, the client will transparently start receiving
packets from another server. There would be no reconnec-
tion required on the user end. There is also the benefit of
being able to identify a content source by name (for exam-
ple “DW-TV“) instead of by an IP address and a pair of port
numbers.
2.2. Quick! Turn on Channel 9!

Sometimes, if there’s something really extraordinary on
television, a friend might call you up and exclaim “Turn
on Channel 9! There’s something you really need to see!”
This scenario allows you to specify that a selection of your
friends may automatically display a TV channel on your
computer. This is akin to the X Windows functionality of
allowing certain hosts to display windows on your desktop
(using the xhost command).

This final scenario shows how to correlate multimedia
content with notifications from any arbitrary Elvin based
application. In this example, the channel name from the
MPEG teletext notifications is correlated with an Elvin
based chat application. The result is that your friends or
colleagues may turn on the TV to a specified channel so that
you don’t miss the “something you really need to see!”.

There are limitless other possibilities, most of which
should require no additional programming work.

3. Related Work
There are numerous content-based event systems

(Gryphon [17], iBus [9], JEDI [5], Keryx [8], Siena [4],

CORBA notification Service [12], Java Message Service
[11]). To our knowledge, nobody has attempted to use any
of these event based architectures to distribute multimedia
content. More to the point, we are not aware of any at-
tempt to combine event services, event correlators and real-
time streaming protocols to deliver customised multimedia
content to the end user. It is our view that event based
systems and their respective correlation engines provide an
ideal platform upon which to build a customised multimedia
delivery system.

The following paragraphs review previous projects that
attempt to deliver customised media streams. Although
none of them marry multimedia with event notification sys-
tems, they do provide ideas that proved to be useful in our
architecture.

The Medusa project [18] from ORL is an ATM based
platform that can support the storage and streaming of mul-
timedia data. One project that took advantage of this plat-
form was a combined ORL and Cambridge University effort
to store news broadcasts for later retrieval by users [3]. The
key to this architecture is the storage of teletext in parallel
with the video and audio tracks. Users can formulate a text
query which is then matched with the teletext. Matches are
ranked in order of relevance. The user can then retrieve one
or more of the matching video streams from storage.

A large portion of the Cambridge project was concerned
with an analysis of the relevance of the matches returned to
the user. Although the results of these experiments cannot
be directly utilised in the architecture presented in this pa-
per due to differing goals, one conclusion does prove useful:
teletext serves well as meta-data. That is, in general, teletext
provides a good indication of the content of the accompany-
ing video and audio tracks.

The PRISM architecture [1] from AT&T is a system for
content discovery. PRISM does not specify how media
items are selected by the user, but it does specify how these
items are named, and how the ”best” media server is se-
lected from a set. PRISM uses a late binding mechanism,
such that users may choose content using a content nam-
ing URI, without having to know which content server will
serve that content.

The architecture presented in this paper uses ideas from
both the Cambridge project and PRISM. It treats teletext as
meta-data that describes the content of the video and au-
dio streams, and allows users to select content based on the
teletext. However, it also provides location transparency in
a similar way to PRISM. The major innovation that this pa-
per hopes to provide is the ability to customise media dy-
namically. Unlike the Cambridge project and other similar
projects, our design does not require that a media broadcast
be stored to disk, then indexed, then searched or browsed.
Rather, it provides a way in which live media can be cus-
tomised to the users’ needs.

4. Components Used in the Architecture
Our architecture will be presented in Section 5. Our

architecture combines several components shown in Fig-
ure 1. They are a notification service called Elvin, a cor-
relation service, RTP (Real-Time Transport Protocol) and
DVB/MPEG2 streams and decoder. This section gives a
brief overview of these components.
4.1. Elvin

Elvin [14] is a content based routing service. Consumers
subscribe to receive events whose content matches some ex-
pression. Producers emit events. The Elvin routing ser-
vice performs the matching of subscriptions to events, and
forwards these events to the relevant consumers. Elvin is
anonymous in so far as a producer does not know who is
consuming its events, and a consumer does not know who
produces the events it receives. An Elvin notification con-
sists of a set of key-value pairs. The keys are strings, and
the value may be an integer, float, string or opaque. A sub-
scription expression, sent by a consumer to the Elvin router,
controls which events will be received by the consumer.

Elvin has several benefits besides the obvious one of al-
lowing packets to be routed based on the content they con-
tain.

Another benefit is the potential to provide transparent
fault tolerance. A publisher of information may have estab-
lished two or more redundant servers. If the primary server
stops transmitting due to a disk crash or other failure, one of
the backup servers begins transmitting instead. The client
receiving the data will be oblivious to the failure. No recon-
nection is necessary on the part of the client.

As will be shown in Section 6, the use of Elvin in con-
junction with the Elvin Correlator (described below) allows
the construction of usage scenarios that were not envisaged
at application development time. In other words, even non-
technical users can extend the original application by pro-
viding simple inputs to a graphical user interface, for exam-
ple.
4.2. Elvin Correlation

The Elvin Correlation engine [6] draws on techniques
used in GEM [10] and other event based systems. Event
correlation allows higher order events to be produced from
a set of lower order events. The arrival of several lower or-
der events (possibly within a restricted time-frame) might
trigger the emission of a higher order event.

An Elvin correlation specification is expressed in an
XML [2] dialect. A correlation specification is a rule that
consists of Events and Relationships between events, fol-
lowed by a corresponding action to carry out. Events are
either received from a service with a well defined name (an
Elvin producer), or they are temporal events that represent a
specific local time.

Finally, there are a number of actions that may be taken
once a rule has been matched. An action may enable or dis-

able a rule or a portion of this rule. It may emit a notification.
Or it may execute a call-back function.

The Elvin Correlation service exists as a standard Elvin
producer and consumer. The correlation service subscribes
to receive component events as they appear in the event part
of the specification, and may emit a higher order event de-
pending on the action section of the specification.

Section 6 shows an example of an Elvin correlation spec-
ification.
4.3. Real-Time Transport Protocol

The Real-Time Transport Protocol (RTP) is described in
RFC 1889 [13]. It is the Internet standard protocol for the
transport of real-time data such as live video and audio. RTP
has a data channel and a control channel. The control chan-
nel is known as RTCP (Real-Time Control Protocol). RTP
is transport independent. That is, it may carried over TCP,
UDP or any other protocol for that matter. In most circum-
stances, UDP is chosen because it is more suitable for real-
time data than TCP (one doesn’t want to delay the playback
of a video midstream while dropped packets are re-sent by
the transport). A media source might contain many differ-
ent tracks of data. For example, a Quicktime movie contains
both a video component and an audio component. RTP de-
livers each of these streams in separate sessions. This en-
ables more flexibility, since the user may choose not to have
the video component delivered. Each session has a data
channel and a control channel. When used in conjunction
with UDP or TCP, these two channels are differentiated us-
ing different port numbers.
4.4. DVB/MPEG-2

MPEG-2 (Moving Picture Expert Group) encodes audio,
video and data into a form suitable for storage and trans-
mission. DVB (Digital Video Broadcasting) is a broad-
cast technology based on MPEG-2 [16]. DVB is a point to
multi-point data delivery mechanism with guaranteed qual-
ity of services. MPEG-2 is the source encoding of audio and
video data that is transmitted over DVB. Data is organised
in a manner optimum for broadcast media by using the rigid
timing framework of the television signal. Teletext data are
conveyed in Packetized Elementary Stream (PES) packets
which are carried by the Transport Stream (TS).

DVB/MPEG-2 is the source format for multimedia data
in this project. It was chosen simply because it is the most
popular mechanism for broadcasting digital television.

The relationship between MPEG-2 and RTP is described
in RFC 2250 [7]. This IETF document describes how
MPEG-2 is carried by RTP. The audio and video tracks from
the MPEG-2 source may be multiplexed and carried in a sin-
gle RTP session, or they may be separated and sent in their
own RTP sessions.

5. Architecture
We assume that subscribers know how to use/interpret

the sequences of discrete and continuous event they are re-

questing.

5.1. Overview
The purpose of this paper is to describe a way in which

multimedia may be customised to the end users’ needs.
Therefore the design is focused on specifying how Elvin,
Elvin correlation and RTP can be combined to create cus-
tomised media feeds. For completeness, we also describe
how multimedia can be received from our chosen source
(DVB), decoded into its component MPEG-2 Elementary
Streams and then sent via ElvinRTP to the end users. Figure
1 shows a high level overview of the proposed architecture.
The arrows indicate the logical flow of data from the Con-
tent Server to the client’s end system. The actual path taken
by the data is somewhat different.

Teletext [15] is one of the key components of this archi-
tecture, for it acts as meta-data that describes the content of
the video and audio streams. So the teletext provides the
means by which multimedia content can be customised to
the user’s preference. Depending on the customisation re-
quirements of the user, the teletext notifications from one
channel can be correlated with teletext from another chan-
nel, or the teletext can be correlated with notifications from
a totally separate application. In the simplest of cases no
correlation is required. Use cases corresponding to the mo-
tivating examples are given in Section 6.

5.2. The Content Server/TIU
Using the terminology of RFC 1889, the Content Server

can be thought of as a Transmitting Interworking Unit
(TIU). That is, it receives data from a multimedia source (in
this case a DVB broadcast), and transmits using RTP. The
TIU receives a multiplexed MPEG-2 Transport Stream from
a DVB broadcaster. A DVB-S transponder can transmit up
to 8 separate Standard Definition programs or 2 HDTV pro-
grammes. Each programme may contain video, audio and
other data elementary streams. This project utilises only
those elementary streams containing video, audio and tele-
text data. A DVB decoder card or software in the TIU de-
codes the Transport Stream into its component Elementary
Streams. Elementary Streams containing video or audio are
sent via ElvinRTP, whilst the text from teletext Elementary
Streams is pulled out of the PES packets and sent directly
via Elvin as strings (the tel2str module in Figure 1). The
teletext notifications also contain the name of the channel to
which they correspond.

5.3. The Correlator
The task of the Elvin Correlator is to receive a correla-

tion specification from a client, and execute the specifica-
tion. In this architecture, the correlator will be given a spec-
ification that contains the rules for performing some kind
of customisation for the user. The specifications will gen-
erally contain rules for correlating multiple TV channels, or
correlating TV channels with events from other Elvin based

MPEG−2 (DVB)
Sound

Teletext

Video

Elvin

TCP/UDP

& Correlator

Elvin
Tel2str

Producer
Data String

Sound

Video

TIU

Transmiting Interworking Unit

MPEG−2

CODEC

RTP
Elvin

Correlator

V
ideo/S

ound/D
ata/E

vents

Receiving Internet

End−System

MPEG−2 (DVB)

RTP

TCP/UDP

& Correlator

Elvin

Sound

Teletext

Video

Elvin discrete events

MPEG2 (DVB) feed

from satelites

Viewer
Application

decoder

MPEG

RTP

RIE

(Elvin Client)

Figure 1. Data flow and the ElvinRTP protocol stack

applications. In this way, the client can create highly cus-
tomised usage scenarios that were not originally envisaged
by the client application developer. At this point, correla-
tion is performed on the teletext notifications. At some later
time, it may be possible to perform correlation on the video
and audio streams themselves.
5.4. Elvin RTP

Whilst it is not critical in this architecture that Elvin is
used as the underlying transport for RTP, it does have its
benefits. That is to say, while it is necessary for the teletext
to be carried by Elvin so that content customisation may be
performed, the audio and video itself could be transported
by any suitable real-time protocol such as the Real-Time
Streaming Protocol (RTSP) or RTP over UDP. However,
we have chosen to transport the audio and video data us-
ing RTP over Elvin (ElvinRTP). As stated in Section 4.1,
there are many benefits that Elvin provides for our architec-
ture. Among these benefits are location transparency and
meaningful transport addresses. As Elvin matures, it may
also become possible to have the Elvin router filter multime-
dia payloads directly, without relying on the teletext compo-
nent.

Elvin itself can run over TCP and UDP among other
transports. For the purposes of ElvinRTP, it is most sen-
sible to use UDP, since we would rather risk losing a few
packets than for the entire stream to be held up waiting for
a lost packet to be re-sent. The box on the right of Figure 1
shows the protocol stack used in this architecture.

ElvinRTP transport addresses are somewhat different to
those used in TCP or UDP. Instead of using an IP address
to identify a receiver (or a group of receivers in the case of
a multicast address) in conjunction with two port numbers,
ElvinRTP addresses are a combination of an Elvin URL of
the form elvin://elvin.server.com and a session name such

as ”DW-TV”. The data stream is given a notification type of
”DATA” and the control channel is given a notification type
of ”RTCP”. The notification format below should make this
a little simpler to comprehend.

Table 1. ElvinRTP notification format
ElvinRTP 1.0
channel DW-TV

type DATA
content-type video
participant myUniqueID

data rtp packet

The content-type field specifies what kind of data is be-
ing sent in this RTP session. The participant field is globally
unique within an RTP session. It may be generated by the
ElvinRTP transport layer, or it may use the SSRC field from
the RTP layer. This field is required so that packets origi-
nating from a participant are not routed back to that same
participant. So a subscription will always be of the form
“channel == channel X where participant != myUniqueID”.
Finally, the data field contains the RTP packet itself.

Note that Elvin can use server discovery to locate the
nearest Elvin router. This feature could be used to allow ab-
solute location transparency from the client’s point of view.
The client does not need to know the source of the multime-
dia content, and it isn’t required to know the address of an
Elvin server.
5.5. Teletext Notifications

Unlike the video and audio components of the original
DVB/MPEG-2 source, the teletext is not sent via RTP. In-
stead, it teletext is sent as a string in its own kind of Elvin
notification. DVB teletext can be sent as character data
or it can be bitmapped. This architecture works only with
character-based teletext. The Content Server processes the

teletext received from the DVB broadcast and sends an Elvin
notification, which contains the channel name and the tele-
text string.
5.6. The Client

RFC 2250 gives the name Receiving Interworking End-
System to those nodes which receive MPEG data over RTP.
In other words, they are basic clients which do not transmit
any MPEG data themselves. These are the target nodes for
our architecture.

As will be described in more detail in Section 6, the client
establishes a connection to an ElvinRTP transport address.
This is will be the name of a TV channel. However, depend-
ing on the user’s needs, the user may not initially know the
name of the channel to which they want to connect. They
may just have an idea of the content they want to view. In
this case, they subscribe to receive teletext notifications that
match the content they wish to see. The client application
then retrieves the channel name from the teletext notification
and connects to that channel. The teletext notification may
come via the correlator depending on the type of customisa-
tion involved. A correlation expression contains

�����
an event

section that describes what content the client is interested
in. The event section describes the correlation between the
teletext data from one channel and the teletext from another
channel, or another Elvin based application and

�������
an ac-

tion section that specifies how to re-emit the relevant teletext
notifications. The client will organise for the notification to
be emitted on a channel which it shares with the correlation
engine.

6. Client Interface
This section provides the subscription expressions and

correlation specifications needed to implement the motivat-
ing examples in Section 2.
6.1. The User Knows the Channel

This is the basic scenario. Here, the user explicitly con-
nects to a specific channel with a well known name. All
subsequent scenarios must ultimately connect to a TV chan-
nel in the same way once the client application has deter-
mined the name of the channel to connect to. As dictated by
the RTP standard, each RTP session has a data channel and
a control channel. Furthermore, the video and audio con-
tent should be sent in separate RTP sessions. Thus, we have
two sessions, each with its own data and control channels,
yielding four separate connections. Each of the subscription
expressions below corresponds to one of the four required
connections.

� require(“ElvinRTP”) && “channel”==“DW-TV” && “type”==“data” &&
“content-type”==“video” && “participant” != “12345”.

� require(“ElvinRTP”) && “channel”==“DW-TV” && “type”==“rtcp” &&
“content-type”==“video” && “participant” != “12345”.

� require(“ElvinRTP”) && “channel”==“DW-TV” && “type”==“data” &&
“content-type”==“audio” && “participant” != “12345”.

� require(“ElvinRTP”) && “channel”==“DW-TV” && “type”==“rtcp” &&
“content-type”==“audio” && “participant” != “12345”.

The last component of each subscription ensures that the
Elvin router does not “echo” the client’s own notifications
back to the client.

6.2. Quick! Turn on Channel 9!
The final scenario provides just one example of corre-

lating multimedia content with content from other applica-
tions. It demonstrates the way in which Elvin can be used
to create scenarios which were not envisaged at the time the
client application was developed. It also demonstrates the
power of composing two different Elvin based applications
to create a useful tool.

Imagine you have established a private Elvin based chat
group with your friends. For example, you might be us-
ing the Elvin xtickertape program. You have agreed that
the sequence of notifications “ALERT channel” followed by
“ � channel name � ” is to be used to indicate there is some-
thing exciting on a certain channel. Whenever a friend sends
a message like this to the chat group, you want your TV
viewing application to automatically connect to the speci-
fied channel with no intervention by you.

In this case, we need to correlate notifications from two
entirely separate applications: the MPEG streaming appli-
cation and the chat program. The channel name sent in a
chat notification needs to be correlated with an actual chan-
nel that transmits MPEG data. The following correlation
specification will yield the desired effect:

<rule name=‘‘news-alert’’>
<and guard=‘‘events[‘mpeg’][‘channel’] ==

events[‘chat2’][‘TICKERTEXT’]’’/>
<event name=‘‘mpeg’’ subscription=
‘‘require(ElvinRTP)’’ />

<then guard=‘‘events[‘chat1’][‘USER’] ==
events[‘chat2’][‘USER’]’’/>

<event name=‘‘chat1’’ subscription=
‘‘require(Chat) && TICKERTEXT ==

‘ALERT channel’ && (USER == ‘Bill’
|| USER == ‘Anna’)’’/>

<event name=‘‘chat2’’ subscription=
‘‘require(Chat) && (USER == ‘Bill’

|| USER == ‘Anna’)’’ />
</then>

</and>
</rule>

This correlation expression will allow Bill and Anna to
“turn on” a TV channel on your workstation. Note that no
extra functionality is required to be programmed into the
client. This scenario is made possible by Elvin and the Elvin
correlation engine.

Of course there are certain security issues with this sce-
nario (how do we know that someone isn’t spoofing notifi-
cations that claim to be from Anna?) that we will ignore.
However, Elvin contains security measures that will over-
come these kinds of security threats. A discussion of these
measures is beyond the scope of this paper.

7. Conclusion
This paper has presented a scheme for personalising mul-

timedia feeds dynamically. It is this feature that distin-
guishes it from other similar architectures. We have shown
that content-based event notification systems are a natural
choice for implementing such an architecture. By using
the Elvin notification protocol, we have designed a system
whereby content from multiple TV channels can be filtered
and correlated with each other, and with events from com-
pletely independent applications.

The authors’ continuing interests lie in the application of
this architecture to mobile environments and the inclusion
of context-awareness. It is envisaged that multimedia feeds
could be automatically personalised based upon the mobile
user’s current context. It is expected the choice of a loosely
coupled, asynchronous protocol such as Elvin will be advan-
tageous in mobile environments where disconnectedness is
a major issue.

References

[1] C. D. Basso, R. Cranor, M. Gopalakrishnan, C. Green,
D. Kalmanek, S. Shur, C. Sibal, Sreenan, and J.E.
van der Merwe. Prism, an ip-based architecture for
broadband access to tv and other streaming media. In
Proceedings of IEEE International Workshop on Net-
work and Operating System Support for Digital Audio
and Video (NOSSDAV), 2000.

[2] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen
(eds). Extensible markup language (XML) 1.0. W3C
Recommendation, 1998.

[3] Martin G. Brown, Jonathon T. Foote, Gareth J. F.
Jones, Karen Sparck Jones, and Steve J. Young. Au-
tomatic content-based retrieval of broadcast news. In
ACM Multimedia 95 Electronic Proceedings, Novem-
ber 1995.

[4] A. Carzaniga, D. Rosenblum, and A. Wolf. Interfaces
and algorithms for a wide-area event notification ser-
vice, 1999.

[5] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI
Event-based Infrastructure and its Application to the
Development of the OPSS WFMS. IEEE Transactions
on Software Engineering, 2001.

[6] Michael Henderson. A framework for event corre-
lation. Master’s thesis, University of Queensland,
http://elvin.dstc.edu.au/projects/correlation/index.html,
October 1999.

[7] D. Hoffman, G. Fernando, V. Goyal, and M. Civan-
lar. RTP Payload Format for MPEG1/MPEG2 Video .
IETF Internet Standard, January 1998.

[8] M. Wray and R. Hawkes. Distributed virtual environ-
ments and VRML: an event-based architecture. In Pro-
ceedings of the Seventh International WWW Confer-
ence (WWW7), 1998.

[9] S. Maffeis. iBus – The Java Message Bus. Available
at http://www.softwired.ch.

[10] Masoud Mansouri-Samani and Morris Sloman. Gem:
A generalised event monitoring language for dis-
tributed systems. IEEE/IOP/BCS Distributed Systems
Engineering Journal, 4(2):96–108, June 1997.

[11] Mark Hapner and Rich Burridge and Rahul
Sharma and Joseph Fialli. Java Message Ser-
vice. Technical report, Sun Microsystems, Inc,
http://java.sun.com/products/jms/docs.html, 2001.

[12] OMG. Notification Service Specification.
Technical report, Object Management Group,
ftp://ftp.omg.org/pub/docs/formal/00-06-20.pdf,
2000.

[13] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacob-
son. RTP: A Transport Protocol for Real-Time Appli-
cations . IETF Internet Standard, January 1996.

[14] B. Segall and D. Arnold. Elvin has Left the Building:
a Publish/subscribe Notification Service with Quench-
ing . In Proceedings of AUUG97, Brisbane, Australia,
September 1997.

[15] ETSI standards. Specification for conveying itu-r sys-
tem b teletext in dvb bitstreams. ETSI Blue Book Ref-
erences A041, 1999.

[16] ETSI standards. Implementation guidelines for the use
of mpeg-2 systems, video and audio in satellite cable
and terrestrial broadcasting applications. ETSI Blue
Book References A001 - TR 101 154, 2000.

[17] G. Banavar T.D Chandrea B.Mukherjee J. Nagara-
jarao R.E Strom D.C Sturman. An efficient multicast
protocol for content-based publish-subscribe systems.
In The 19th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS’99), Austin, TX
YSA, May 1999.

[18] Stuart Wray, Tim Glauert, and Andy Hopper. The
medusa applications environment. In International
Conference on Multimedia Computing and Systems,
1994.

