
Modelling and Using Imperfect Context Information∗

Karen Henricksen

CRC for Enterprise Distributed Systems Technology and

School of Information Technology and Electrical Engineering, The University of Queensland

kmh@dstc.edu.au

Jadwiga Indulska

School of Information Technology and Electrical Engineering, The University of Queensland

jaga@itee.uq.edu.au

Abstract

Most recently developed context-aware software appli-

cations make unrealistic assumptions about the quality of

the available context information, which can lead to in-

appropriate actions by the application and frustration on

the part of the user. In this paper, we explore the problem

of imperfect context information and some of its causes,

and propose a novel approach for modelling incomplete

and inaccurate information. Additionally, we present a

discussion of our experiences in developing a context-

aware communication application, highlighting design is-

sues that are pertinent when developing applications that

rely on imperfect context information.

1. Motivation

Pervasive computing presents a novel set of design
challenges that demand radically new software engi-
neering techniques. Context-awareness is often touted
as a solution that meets these challenges by enabling
software applications to exhibit the required levels of
flexibility and autonomy. Context-aware applications
exploit information about the context of use, such as
the location, tasks and preferences of the user, in order
to adapt their behaviour in response to changing oper-
ating environments and user requirements. This infor-
mation is gathered from sensors or from human users.

Context-aware applications typically assume that
the context information upon which they rely is com-

∗ The work reported in this paper has been funded in part by the
Co-operative Research Centre for Enterprise Distributed Sys-
temsTechnology (DSTC) through theAustralianFederalGov-
ernment’s CRC Programme (Department of Industry, Science
& Resources).

plete and accurate. However, this assumption is usu-
ally unjustified, as sensed context information is often
inaccurate or unavailable as a result of noise or sen-
sor failures, while user-supplied information is subject
to problems such as human error and staleness.

Consequently, usability problems arising from re-
liance on imperfect context information are sometimes
observed in context-aware applications. For example,
Benford et al. recently presented an interesting discus-
sion of the implications of using imperfect location data
in an mixed-reality game [1]. They noted that errors in
location information often led to confusion when game
players were observed to jump around unpredictably in
the virtual environment, but were also exploited by so-
phisticated users for tactical advantage.

Clearly, context-aware applications must be devel-
oped with an understanding of the problems inher-
ent in gathering reliable context information, and also
of the attendant design issues. In this paper, we ex-
plore these challenges. We characterise various types
and sources of imperfect context information, present
a set of novel context modelling constructs that accom-
modate these, outline a software infrastructure that
supports the management and use of imperfect con-
text information, and describe our experiences with us-
ing the context modelling approach and infrastructure.

2. Characterising context information

2.1. Types of imperfection

In this section, we characterise four types of im-
perfect context information. We consider imperfection
with respect to specific properties or attributes. These
are aspects of the context that can be described by
atomic pieces of information, such as the location or

Type Source Persistence Quality issues Sources of inaccuracy

Sensed Physical and Low May be inaccurate, Sensor errors and failures; network
logical sensors unknown or stale disconnections; delays introduced by

distribution and interpretation

Static User/administrator Forever Usually none Human error

Profiled User (directly or Moderate Prone to staleness, Omission of user to update in
through applications) may be unknown response to changes

Derived Other context Variable As for base types + subject Imperfect inputs; use of a crude or
information to further errors introduced oversimplified derivation mechanism

by the derivation process

Table 1. Typical properties of context information.

activity of a given user, or a capability of a comput-
ing device. A property is:

• unknown when no information about the property
is available;

• ambiguous when several different reports about
the property are available (for example, when two
distinct location readings for a given person are
supplied by separate positioning devices);

• imprecise when the reported state is a correct yet
inexact approximation of the true state (for ex-
ample, when a person’s location is known to be
within a limited region, but the position within
this region cannot be pinpointed to the required
(application-determined) degree of precision); or

• erroneous when there is a mismatch between the
actual and reported states of the property.

Various combinations of these four classes of imperfec-
tion are possible (e.g., amongst a set of ambiguous re-
ports, at least some will be imprecise or erroneous).

Unknowns usually result from connectively prob-
lems and sensor and other failures. Ambiguous infor-
mation arises when the value of a property can be de-
rived independently from multiple sources. Where pos-
sible, ambiguous information should be resolved early
using conflict resolution techniques. However, this is
not always possible, implying that ambiguous informa-
tion must sometimes be exposed to, and meaningfully
exploited by, context-aware applications. Imprecision is
common in sensor-derived information, while erroneous
context information arises as a result of human error
and the use of brittle heuristics to derive high-level in-
formation from crude inputs.

2.2. Classes of context information

We partition context information into four classes as
shown in Table 1. Specifically, we recognise three prin-
cipal sources of context information: sensors, human
users and derivation from other types of information.

Sensed context information is usually frequently chang-
ing, and suffers from problems such as inaccuracy and
staleness. User-supplied context information is usually
by necessity slowly changing, as it is unreasonable to
expect users to keep frequently changing information
current. This type of information is either static (never
changing and therefore highly accurate) or dynamic.
We term the latter type of information profiled con-
text. This is usually obtained directly from users in
the form of user profiles, or indirectly from the user’s
applications (e.g., from scheduling software that main-
tains a history of user activities). Profiled information
is often out-of-date or incomplete. Finally, the charac-
teristics of derived information are usually largely de-
termined by those of the base information types, how-
ever further errors and inaccuracies can be introduced
by the derivation process.

3. Related work

Few of the software infrastructures and modelling
abstractions developed in the field of context-awareness
address the problem of imperfect context information.
Here, we briefly survey some of the exceptions.

Schmidt et al. propose a layered software architec-
ture for abstracting context information from sensors,
which models context as a vector of pairs [9]. Each pair
consists of a value and an accompanying probability
estimate. The programming primitives provided along-
side the architecture allow actions to be associated with
the detection of contexts with predefined levels of prob-
ability. Judd and Steenkiste describe a generic interface
for querying context services that allows clients to spec-
ify their quality requirements as bounds on accuracy,
confidence, update time and sample interval [7]. Con-
text services endeavour to meet the requirements, and
explicitly signal failures to do so in query responses.
Finally, Lei et al. present a context service that ac-
cepts freshness and confidence metadata from context
sources, and passes this along to clients so that they

can adjust their level of trust accordingly [8]. The ser-
vice also allows clients to express desired quality levels
in queries.

These solutions have several shortcomings which we
address in our work. First, as discussed in an earlier pa-
per [5], almost all currently used context modelling ap-
proaches lack the required formality and expressiveness
to capture rich types of context information and sup-
port reasoning about context. Further, even the solu-
tions that accommodate some types of imperfect infor-
mation neglect to adequately accommodate unknown
and ambiguous information. Lei et al. acknowledge the
problem of ambiguity, but leave it to clients of their
context service to resolve it.

4. Modelling context information

We developed our own context modelling approach
designed to overcome these shortcomings based on Ob-
ject Role Modeling (ORM) [2]. In this section, we intro-
duce ORM and discuss the use of our context modelling
extensions to describe imperfect information and to dif-
ferentiate the four types of context information char-
acterised in Section 2.

Our modelling approach is designed to support a va-
riety of tasks across the software lifecycle. First, its
graphical notation is well suited for use by the de-
veloper in the task of identifying and specifying the
context requirements of an application, and explor-
ing related information quality issues. The mapping of
the modelling concepts to a relational data model (de-
scribed in an earlier paper [6]) supports a straightfor-
ward translation of the graphical model to a context
management system (implemented as an extended and
possibly distributed database) that aggregates, stores
and responds to queries on context information at run-
time. Finally, further context modelling and program-
ming abstractions that are closely integrated with the
modelling approach presented here (described in a com-
panion paper [4]) serve to simplify the task of imple-
menting flexible context-aware applications.

4.1. Basic modelling constructs

ORM’s basic modelling construct is the fact type.
The modelling process chiefly involves identifying the
required fact types and annotating these to indicate
constraints on populations. The instantiation of an
ORM model consists of a set of facts that conform
to the specified constraints. Fact types are drawn in
ORM’s notation as a series of role boxes, where each
box is attached by a line to an object type that partic-
ipates in the role. Each fact type is annotated with a

name and one or more uniqueness constraints (similar
to key constraints in the relational model), indicated
by double-headed arrows over a subset of the roles.
Object types are drawn as ellipses containing a name
and an optional reference mode in parentheses that de-
scribes the representation of instances (e.g. by identi-
fier or name). An example model is shown in Figure
1. The annotations on the fact types principally repre-
sent our extensions to ORM and are discussed in the
following sections.

4.2. Modelling classes of context informa-

tion

The differentiation of the four classes of context in-
formation described in Section 2 is important for con-
text management purposes (as, for example, sensed
context information requires different treatment to
static information in terms of conflict detection and up-
date management). Derived fact types are already sup-
ported by ORM; these are shown by attaching an as-
terisk to the relevant fact type and supplying a rule
that describes the production of derived facts from the
base fact type(s). In order to distinguish the remain-
ing types of information, we introduce an annotation
scheme that explicitly marks each non-derived fact type
as sensed, static or profiled, as shown in Figure 1.

In our example model, locations of people and com-
puting devices are acquired from sensors. Proximity of
users to devices is inferred from these two sensed types.
Information about permissions of people to use devices
is supplied by a human (e.g. an administrator). Finally,
device type information is static.

4.3. Modelling alternatives

When a fact type can contain ambiguous or conflict-
ing information it is marked as an alternative type us-
ing the ‘a’ annotation shown in Figure 1. Each alterna-
tive type has a special alternative uniqueness constraint
that spans all but one role of the fact type. Facts ap-
pearing in an instance of the fact type are viewed as al-
ternatives when they have identical values for all of the
roles spanned by this uniqueness constraint.

In the model of Figure 1, the locations of people are
represented by an alternative fact type. This implies
that each person can have several recorded locations
(corresponding to separate sensor readings).

The difference in semantics between alternative and
ordinary facts must be taken into account when reason-
ing about context. Our approach is to apply a three-
valued logic in which ordinary facts are viewed as truth-
ful and alternative facts as possibly true [4, 3].

located near

permitted to use

(id)

DevicePerson

(name)

*

a
*

s
Key

Quality annotation
Alternative key constraint
Key constraint
Alternative fact type
Derived fact type
Profiled fact type
Sensed fact type
Static fact type

located at

s

has type

(number)
Probability

a

located at

*

(name)

Device Type

Certainty

Location

(name)

located near(p,d) iff located at(p, l1)

 and l1=l2

 and located at (d, l2)

Figure 1. Example context model.

4.4. Modelling information quality

We also extend ORM to allow facts to be associ-
ated with relevant quality indicators that allow the end
users of the information (usually context-aware appli-
cations) to make judgements about the level of confi-
dence they invest in it. Each fact is associated with zero
or more quality parameters, which in turn are charac-
terised by one or more concrete metrics. The exam-
ple model shown in Figure 1 associates facts belonging
to the two sensed types with a single certainty mea-
sure, expressed as a probability estimate.

4.5. Representing unknown context

In order to support effective reasoning about con-
text information, it is important to distinguish between
false and unknown information. We capture unknowns
using null values, following the approach commonly
used in database systems. Facts that are not present
are assumed false under a closed world assumption [4].

4.6. Other modelling constructs

We provide further extensions to ORM that allow
the modelling of historical information and dependen-
cies between different types of context information.
These fall outside the scope of this paper, but are de-
scribed elsewhere [6, 3, 5].

5. Management and use of context in-

formation

We have implemented software support for our con-
text modelling approach in the form of an infrastruc-

ture that manages context information from a variety
of sources and facilitates the exploitation of this infor-
mation by applications. A high-level view of the main
components of this infrastructure is shown in Figure 2.

The responsibilities of the infrastructure are three-
fold. First, the context gathering components (sen-
sors, interpreters and aggregators) acquire and process
sensed context information. Second, a distributed con-
text management system assumes the role for integrat-
ing, storing and managing context information from a
range of sources, responding to context queries, and
generating notifications of significant context changes.
The context management system also provides inter-
faces for users to easily update and browse their static
and profiled context information. A set of plug-in com-
ponents, which we term context receptors, perform
fact-type-specific management tasks. In the case of
sensed context information, these are responsible for
mapping the heterogeneous context information pro-
duced by the context gathering components into the
fact abstraction used by the context management sys-
tem, routing queries from the management system to
the appropriate components, and detecting and resolv-
ing conflicts and ambiguity where possible. Finally, a
programming toolkit allows context-aware applications
to easily exploit the services of the context manage-
ment system using the programming models and ab-
stractions described in a companion paper [4].

6. Experiences and discussion

As a case study, we developed a context-aware com-
munication application using the context modelling ap-
proach and software infrastructure described in the pre-

Sensor Sensor Sensor Sensor Sensor

InterpreterInterpreter

Synchronous
communication

Asynchronous
communication

KeyApplication Application Application

Programming Toolkit

Context Management System

Receptor Receptor Receptor

Aggregator

Figure 2. Architecture of the context-awareness

infrastructure.

vious sections. We now present a brief discussion of our
experiences in this case study, focusing on design issues
related to the use of imperfect context information.

The application provides agent-based support for
context-sensitive choice of communication channels for
interactions between users. Each agent manages the in-
teractions of a single person using relevant preference
and context information as described in [4].

The context model used by the application is an ex-
tension of the model shown in Figure 1. It covers asso-
ciations between people and their communication de-
vices and channels, locations of people and devices, re-
lationships between people, and historical information
about user activities. Most of the information is pro-
filed or static, and highly reliable. The exceptions are
user location information, which is often ambiguous,
and activity information, which is often unknown.

The application addresses the problem of imperfect
information in part by retaining the user in the de-
cision loop. This allows inappropriate choices, arising
from reliance on flawed context information or prefer-
ences that imperfectly reflect user requirements, to be
detected and overriden. Additionally, preference infor-
mation is exposed to users so that it can be corrected or
evolved if necessary. However, we found that when the
preference set was large or complex, it was not always
easy for users to identify (and then change) the prefer-
ence(s) responsible for producing undesirable choices.
In the future, we would like to add a mechanism that
allows users to flag poor choices as they arise, and to
view and manipulate the specific preference and con-
text information that led to a given choice.

7. Concluding remarks

The problem of imperfect context information rep-
resents a significant obstacle to the success of context-
aware applications, yet is commonly overlooked. In this
paper, we attempted to partially remedy this situation
by presenting a novel approach to modelling and using
imperfect context information. We also discussed ex-
periences gained through a case study, highlighting a
small sample of the challenges and design issues that we
encountered. Further information about the case study
can be found in [4].

References

[1] S.Benford,R.Anastasi,M.Flintham,A.Drozd,A.Crab-
tree, C. Greenhalgh, N. Tandavanitj, M. Adams, and
J. Row-Farr. Coping with uncertainty in a location-
based game. IEEE Pervasive Computing, 2(3):34–41,
July-September 2003.

[2] T. A. Halpin. Information Modeling and Relational
Databases: From Conceptual Analysis to Logical Design.
Morgan Kaufman, San Francisco, 2001.

[3] K. Henricksen. A framework for context-aware pervasive
computing applications. PhD thesis, School of Informa-
tion Technology and Electrical Engineering, The Univer-
sity of Queensland, Submitted September 2003.

[4] K. Henricksen and J. Indulska. A software engineering
framework for context-aware pervasive computing. In
2nd IEEEConference on Pervasive Computing and Com-
munications (PerCom), Orlando, March 2004.

[5] K.Henricksen, J. Indulska, andA.Rakotonirainy. Model-
ing context information in pervasive computing systems.
In 1st International Conference on Pervasive Computing
(Pervasive), volume 2414 of Lecture Notes in Computer
Science, pages 167–180. Springer, 2002.

[6] K. Henricksen, J. Indulska, and A. Rakotonirainy. Gen-
erating context management infrastructure from context
models. In 4th International Conference on Mobile Data
Management (MDM) - Industrial Track,Melbourne, Jan-
uary 2003.

[7] G. Judd and P. Steenkiste. Providing contextual infor-
mation to pervasive computing applications. In 1st IEEE
Conference on Pervasive Computing and Communica-
tions (PerCom), pages 133–142, FortWorth,March 2003.

[8] H. Lei, D. M. Sow, J. S. Davis, G. Banavar, and M. R.
Ebling. The design and applications of a context service.
ACM SIGMOBILE Mobile Computing and Communica-
tions Review, 6(4):45–55, October 2002.

[9] A. Schmidt and K. Van Laerhoven. How to build smart
appliances. IEEE Personal Communications, Special Is-
sue on Pervasive Computing, 8(4):66–71, August 2001.

