
Adapting the Web Interface: An Adaptive Web Browser1

K. Henricksen and J. Indulska
Department of Computer Science and Electrical Engineering, The University of Queensland

Email: {karen, jaga}@csee.uq.edu.au

1 The work reported in this paper has been funded in part by the Co-operative Research Centre Program through the Department of Industry, Science &
Tourism of the Commonwealth Government of Australia.

Abstract
The growing number of mobile computing devices with
diverse characteristics creates a requirement for seamless
(device independent) access to computing resources of
distributed systems. One of the most common
applications in distributed systems is the Web browser,
which is not only used to access resources on the Internet
but also as an interface to many Information Systems
applications. In this paper, we address types of
adaptation that can be applied to a Web browser in
response to diverse context changes, including changes in
available computing resources, input and output device
capabilities, network characteristics, location and user
context. We also present a design and implementation of
a Web browser that adapts to changes in its network and
computing environment by exploiting context metadata.

1. Introduction

Most current applications and protocols for the Web
are designed with traditional computing environments in
mind, in which applications are run on stationary
machines with access to wired networks. However, users
are increasingly turning to mobile devices, which, unlike
stationary devices, are typicall y characterised by
resource-poor environments and frequently changing
context. Thus, the next generation of applications and
protocols will need to take into account the requirements
of mobile and ubiquitous computing. They will need to
be able to respond to users changing computing devices
and mobilit y of computers and applications. Moreover,
they will be required to provide services that exploit an
awareness of the user’s experience and current activities,
as well as other aspects of context, such as location. In
order to meet these requirements, applications must be
capable of dynamicall y adapting to their environments.

Currently available Web browsers provide very littl e
support for adaptation. Typicall y, they permit some types
of static adaptation using configuration options, which

allow the user to manipulate user interface attributes
including fonts, colours, and the loading of images, as
well as behavioural aspects, such as caching strategies
and the use of proxies. However, they do not support
dynamic response to changes in context. This paper
describes how Web browsers can employ sophisticated
adaptation mechanisms to provide context-aware
behaviour and user interfaces.

The structure of the paper is as follows. Section 2
describes a wide range of adaptation types that can be
applied to a Web browser. Section 3 presents our design
of an adaptive browser, Section 4 discusses a prototype
that implements the design, and Section 5 briefly
evaluates the prototype. Section 6 characterises related
work. Finally, section 7 presents concluding remarks,
including areas for future research.

2. Adaptation

Within this paper, the term adaptation refers to the
alteration of an application’s behaviour or interfaces in
response to arbitrary context changes.

The types of adaptation that can be employed by an
application depend on the nature of the application and
the resources it requires. Adaptation mechanisms can be
classified according to the types of context information
they exploit. Classes of adaptation that can be employed
by a Web browser include, but are not limited to those
listed in Table 1. The remainder of this section describes
adaptation mechanisms that fall into each of the
adaptation classes.

2.1 Computing adaptation

Computing adaptation responds to the availability of
resources such as CPU cycles and memory (both primary
and secondary). Adaptation strategies in this class
typically involve matching the consumption of resources
to their availabil ity. The availability of computing
resources varies between devices as well as over time as

the computing load changes.
A Web browser can respond to severely limited CPU

capacity by disabling CPU-intensive tasks, such as the
running of applets or animations. In some cases, CPU
requirements can be traded against user satisfaction or
fidelit y of output, such that high fidelit y output is
provided when processing resources are plentiful, and low
fidelit y output is provided when processing resources are
scarce [1].

The principal usage of memory (both primary and
secondary) by a Web browser is caching. Therefore,
adaptation to memory availabilit y should incorporate
adaptation of the caching strategy. The period for which
files are hoarded in the cache and the size of the cache are
two attributes that can reflect the availabil ity of memory.

Memory availabil ity can also be considered when
selecting between several variants of a resource loaded
from a Web server. When memory is very scarce, the
variant requiring the least memory can be obtained (such
as the thumbnail version of an image). In less extreme
situations, a balance between fidelit y and memory
requirements can be achieved.

2.2 Communication adaptation

A Web browser relies heavil y on network resources to
obtain data from remote hosts. Because the availability of
these resources can vary greatly, particularly when relying
on wireless links, a browser should be capable of
matching its behaviour to the characteristics of the
network.

Bandwidth availability can be reflected in the selection
of resource variants; compact variants may be given
preference over larger variants when bandwidth is scarce.
When bandwidth is severely limited, bandwidth-intensive
resources, such as video, audio and images, may be
disabled altogether, or transformed to more compact
representations prior to transmission over bandwidth-
constrained links.

Jitter is primarily of concern with video and audio
streams. Problems caused by jitter can be overcome by

employing adaptive caching strategies that take into
account the current ji tter rate.

2.3 Input/Output adaptation

With browsing becoming increasingly ubiquitous, the
range of input and output modalities browsers need to
support is increasing. Voice-based browsing enables
users to browse over ordinary telephones and while
engaged in other tasks, such as driving a car. Mobile
phones and PDAs both enable screen-based browsing, but
introduce constraints, including limited input capabilities
and small screens, that require the provision of different
types of user interface to those found on desktop
computers. In the future other types of browsing wil l
become possible with the availabil ity of new input and
output devices.

In order to support a range of device types with
varying input and output capabili ties, as well as different
modes of interaction depending on the user’s capabili ties,
preferences and activities, it is necessary for the browser
to be capable of dynamically adapting its interface to the
context.

The browser should be capable of presenting GUIs that
are adapted to screen size and input devices, as well as
less traditional interfaces, such as voice-based interfaces.

In addition, browsers should adapt the files they
retrieve and present to users according to the output
device characteristics. In the presence of a very small
display, a browser may load the thumbnail version of an
image, whereas when only audio output is available, the
browser may obtain an audio description of the image.

2.4 User adaptation

User adaptation contrasts with the adaptation classes
described in the previous sections as it focuses on context
related to the application user, rather than to the hardware
and software resources. It takes into account factors such
as the user’s level of experience with the application, the
user’s capabil ities and preferences, and other aspects of

Table 1. Adaptation classes

Adaptation Type Description

Computing Responds to the availabil ity of computing resources, including CPU cycles and primary and
secondary memory

Communication Addresses changes in network resources, including disconnections and changes in bandwidth,
latency and jitter

Input/Output Responds to the availabil ity and characteristics of input and output devices

User Concerned with user experience and capabilities, as well as user context such as activities in
which the user is engaged

Location Responds to pertinent location knowledge, including location of users and computing devices

the user’s context, including the activities in which the
user is participating and the other participants.
Adaptation to user context addresses the diverse
requirements of different users, as well as the changing
requirements of a single user over time.

Knowledge of user history can be exploited to provide
a user interface tailored according to the user’s experience
level and commonly performed tasks. Novice users may
be presented with user interfaces that prominently display
fundamental application functionality, with sophisticated
functions largely hidden. As users become more
experienced, increasingly sophisticated functionality may
be revealed. Additionally, the set of available functions
may be tailored according to the user’s history. If a user
frequently executes a particular command sequence, that
sequence may become available as an atomic action.

Capabilities, such as a user’s abil ity to understand both
English and French, and preferences, such as a user’s
preference for English over French, may be reflected in
both the user interface and behaviour of the browser.
Additionally, preferences and capabilities, along with
other user context, can be employed as browsing
parameters, enabling information loaded by the browser
to be context-dependent.

2.5 Location adaptation

Knowledge of the location of users, devices and other
objects can be used within the Web to provide location-
aware services and searches. Various location-sensitive
services have already been developed, such as GUIDE, a
context-sensitive tourist guide [2].

Browsers can also adapt according to location. For
instance, a browser’s security poli cies may be influenced
by knowledge about the local security domain. A
browser may choose to transmit sensitive information
only when it operates in a trusted domain, such as behind
a company firewall , and may also suppress sensitive
information when people who are not authorised to access
the information are nearby.

3. Design

The types of adaptation that have been described are
all dynamic in nature; that is, they are reactions to
dynamic changes in context. There are two distinct issues
involved in creating applications that are dynamicall y
adaptive: creation of adaptation mechanisms for
responding to context changes, and detection of the
context changes that lead to adaptation. In this paper, we
are concerned with the first issue.

This section presents the design of an adaptive Web
browser and server, focusing on a limited subset of the
adaptation types described in the previous section. The
types of adaptation we have chosen to address fall into the
communication and input/output adaptation classes. We

first describe ways in which HTTP can be extended to
enable HTTP clients and servers to cooperate in order to
achieve adaptation. Next, we discuss the impact of the
protocol modifications on the design of the Web server,
as well as the incorporation of adaptation mechanisms
into the browser. Finally, we briefly characterise our
approach to context monitoring.

3.1 HTTP Support for Adaptation

The adaptation mechanisms employed by Web
browsers can be either solely the concern of the browser
or require the cooperation of multiple parties. For
example, a Web browser that adapts its user interface to
the display type by changing the widgets used within the
interface can achieve this adaptation independently.
However, if the browser supports adaptation to network
changes, the Web servers with which the browser
communicates should also participate in the adaptation.
This section characterises our approach to achieving the
latter type of adaptation.

In order to realise adaptation that involves cooperation,
it is necessary for the cooperating parties to be capable of
communicating their requirements to each other. This can
be achieved either by creating a communication protocol
expressly for this purpose, or by extending one or more
existing Web protocols. We favour the second approach
due to its relative simplicity. The remainder of this
section will concentrate on extending HTTP/1.1 [3]. It
should be noted that other protocols employed in the
Web, such as FTP, could similarly be extended.

HTTP assumes that there are two communicating
parties, one of which plays the role of the server and the
other the client. The client requests an operation, such as
GET or PUT, from the server using a request message. A
unique Uniform Resource Identifier (URI) indicates the
resource to which the request applies. Additional
information pertaining to the request, such as the content
types, languages and encodings that will be accepted by
the client, authorisation information and caching
information, can be supplied using request header fields.

A server responds to a request with a response
message, which includes the status of the request (e.g.
OK, Forbidden, Not Found), header fields containing
additional information, and possibly a message body
containing data requested by the client.

There are many ways in which HTTP/1.1 can be
augmented to provide support for adaptation involving
cooperating parties. The extended protocol could allow
the HTTP client to communicate its context parameters
within request messages, permitting the server to adapt its
behaviour to the client’s circumstances. Alternatively, the
HTTP client could assume a more active role and transmit
instructions directing the server about how to adapt. Other
approaches are also possible. Only the first approach wil l
be explored in this paper.

The client’s context information can be conveyed to
the HTTP server using a request header field, such as the
following:

Context: Bandwidth low; Display 1280 * 1024, 16 bit colour

Here we assume a model for specifying context that is
based around context attributes that have associated value
li sts of zero or more values. An alternative context
specification model based on CC/PP [4], which is
currently being developed by the W3C, could be used in
the future.

The context field shown above indicates that the client
has limited bandwidth and a display that is 1280 pixels
wide and 1024 pixels high with 16-bit colour depth. If
necessary, the server can relate its context information to
the client by including a similar header field in its
response message.

3.2 Adaptive Web Server

The HTTP server should take advantage of the context
information supplied by the client to adapt its response to
match the client’s circumstances. If the client indicates a
low level of bandwidth, the server might respond by
sending compressed files to the client. Similarly, if the
client has a display with low colour depth, the server
might send images that use few colours.

HTTP/1.1 provides a mechanism by which several
alternative copies of a resource, known as resource
variants, can be associated with a single URI. This
facilit y is already used by some HTTP servers to adapt
their responses to preferences of the client. The algorithm
that the server uses to determine which variant is most
appropriate is known as a remote variant selection
algorithm (it should be noted that there are also client-side
algorithms that perform the selection). Several such
algorithms have been defined. One of these is RVSA/1.0,
which is described by Internet RFC 2296 [5]. The
algorithm computes quality values for each available
variant and defines the best variant as the one with the
highest value (or the first of several such variants).
Quality values are determined as follows:

Q = Round5 (qs × qt × qc × ql × qf)

The q-values are quality indices, ranging from 0 to 1,
that assess the suitabil ity of the variant in particular areas.
They are interpreted as follows:
• qs reflects the fidelity of the variant
• qt indicates the suitabil ity of the variant’s media type

according to the user’s media-type preferences
• qc indicates the suitabil ity of the variant’s character

set according to the user’s character set preferences
• ql indicates the suitabil ity of the variant’s languages

according to the user’s language preferences
• qf is the features quality factor, which reflects the

suitability of the variant according to additional

features specified by the user within the Accept-
Features request header

The algorithm currently enables adaptation of server
responses to changes in the preferences of the user. We
propose extensions to the algorithm to allow it to
additionally support adaptation to changes in context. To
achieve this, we incorporate an extra index, qe, into the
variant quality computation, which reflects the suitabilit y
of the variant according to the current environment. The
information used to compute this index is extracted from
the context request header field that we defined in the
previous section. The modified quality value
computation is shown below.

Q = Round5 (qs × qt × qc × ql × qf × qe)

We define qe as the product of factors computed
separately for each of the attributes specified by the client
in the context header. As an example, suppose that the
user specifies the context header below.

Context: Bandwidth low; Display 1280 * 1024, 16 bit colour

In this case, qe is the product of:
• a factor that describes the variant’s suitability for a

low level of bandwidth, and
• a factor describing how appropriate the variant is for

the user’s display type.
The computation of each of the component factors is

defined in a manner that is appropriate to the type of
context concerned. The remainder of this section
describes, for il lustrative purposes, one way in which
bandwidth factors can be computed. The bandwidth
factor, qb, reflects how well suited the variant is to the
current level of bandwidth. We assume for simplicity that
bandwidth is characterised by the user as low, medium or
high. qb is computed as follows:
• If bandwidth characterised as medium, then qb is

2
 3 +

size of smallest variant
 3 * size of variant

• Otherwise, if bandwidth is characterised as low, then

qb is
size of smallest variant

 size of variant

• Otherwise, qb is 1
In other words, when the bandwidth level is low or

medium, the suitabil ity of a variant is regarded as being
inversely proportional to its size. However, when the
bandwidth level is medium, the bandwidth factors are
scaled so that they have less influence on overall variant
quality values. In the remaining case, when the
bandwidth level is high or unknown, the bandwidth
factors do not contribute to the variant selection process.

We ill ustrate our modified variant selection procedure
using the variants shown in Figures 1 - 3. In Table 2, we
show the values for qb and Q for each of the variants.
The qb factors are computed according to the algorithm
above. The Q values represent the overall qualit y values,
assuming that variants 1, 2 and 3 are assigned fidelity (qs)

values of 1, 0.5 and 0.4 respectively. We further assume
that all q-values other than qs and qb are equal to 1 for all
of the variants.

According to our modified version of RVSA/1.0,
variant 1 is best in situations of high or medium
bandwidth, and variant 3 in those of low bandwidth.

3.3 Adaptive Web Browser

This section characterises our design of an adaptive
Web browser. The set of adaptation mechanisms we
incorporate forms a subset of the set of adaptation types
li sted in Section 2.

We propose the following three general classes of
adaptation:
• Adaptation to display type: The browser adapts the

interface it presents to the user according to the type
of the display that is used. In particular, fonts and
widgets are adjusted to match the size of the screen.
Additionally, the browser conveys information about
the display to HTTP servers using the context header
field, enabling the servers to adapt their responses
accordingly. If the display type changes at run-time,
the browser dynamicall y alters its interface and
behaviour in response.

• Adaptation to bandwidth availability: The Web
browser communicates to the server the amount of
bandwidth that is available along its network link to
the server, if this information is available. The server
uses this information to adapt its responses
accordingly.

Unfortunately, it is infeasible for the browser to have
knowledge of the bandwidth along every link of the
network. In reality, the browser typicall y only has
reliable information about links connecting it to the
servers that were targets of the preceding few
requests. However, in practice, the user wil l often
send several requests to the same server in quick
succession, so this approach remains useful despite
its limitations.

• Adaptation to network disconnections: The
browser responds to the severing of a link to a HTTP
server by using mirror sites that remain connected,
whenever possible. The browser maintains
collections of mirror sites that can be edited by the
user. It is anticipated that in the future mirror
information could be obtained in an automated
fashion by querying HTTP servers and caching the
information for use when a disconnection arises.

All types of adaptation that we have described are
dynamic; that is, they occur when the browser is first
invoked, as well as when the browser’s environment
changes. Each of the adaptation mechanisms can be
enabled and disabled according to the user’s preference.

3.4 Context Specification and Monitoring

In order to achieve dynamic adaptation, we require a
monitor that tracks the state of the browser’s
environment, and triggers adaptation when significant
changes occur. While the monitoring function could be
incorporated directly into the browser, we believe this is

Figure 3. Low fidelity,
size-reduced JPEG
image (1507 bytes)

Figure 1. High fidelity GIF image
(16293 bytes)

Figure 2. Low fidelity JPEG
image (2584 bytes)

Table 2. Bandwidth and overall quality factors for the three image variants

qb QBandwidth Level
Variant 1 Variant 2 Variant 3 Variant 1 Variant 2 Variant 3

High 1 1 1 1 0.5 0.4

Medium 0.69750 0.86107 1 0.69750 0.43053 0.4

Low 0.09249 0.58320 1 0.09249 0.29160 0.4

an undesirable solution. It leads to a complicated browser,
as well as a significant duplication of effort if several
applications need to monitor the same resources. Instead,
we propose the use of a separate agent whose task is to
track the environment and notify applications of
significant context changes. Our general model of
context specification for adaptive systems can be found in
[6]. In this paper, the specification and monitoring of
context are not our primary concerns; however, for the
purpose of building a prototype, we have designed a
simple resource-monitoring agent that satisfies the
requirements of our adaptive browser.

Clients of the monitor receive notification of context
changes through events. The clients register interest in
certain types of event by providing predicates describing
the types of changes they consider relevant. They also
provide a notification interface into which relevant events
are pushed by the monitor.

The predicate types that we have defined include
mathematical comparison predicates (<, ≤, >, ≥ and =),
changed, which is true every time the context value is
altered, and range, which is true whenever the context
value changes so that it fall s between two specified
bounds. All of the predicate types assume that the state of
a resource can be described by a single value.

A predicate may include a parameter that provides
information affecting its interpretation. For example, a
predicate related to bandwidth may be parameterised by
the name of the link over which the bandwidth should be
monitored.

The following are example predicates:

Notify when bandwidth < 2 Mbps to dstc.edu.au
Notify when display has changed

4. Implementation

In order to test our design, we have constructed a

prototype using Python. This section describes the three
components of our prototype: the adaptive Web browser,
adaptive HTTP server and monitoring agent.

4.1 Adaptive Web browser

Our adaptive Web browser is based on Grail, an
extensible browser created by the Corporation for
National Research Initiatives (CNRI), for which the
source code is freely available. A simplified
representation of the browser’s architecture is shown in
Figure 5. The browser has three main components: the
user interface, browser engine and preference repository.

The user interface component is responsible for
providing a GUI built using the Tk toolkit. It displays
both the browsing interface, consisting of menus and
toolbars, and the information loaded by the browser (Web
pages and applets). The user interface also translates
input from the user into operations provided by the
second component, the browser engine.

The browser engine provides the core functionalit y of
the browser. It performs communication with Web
servers using a variety of protocols, including HTTP and
FTP, and is also responsible for caching.

The preference repository is a data store containing a
dictionary of preference attributes (such as cache size and
font size) and associated values. The values are obtained
through the user interface, and used by both the user
interface and browser engine to provide customised
behaviour.

We have extended the browser to support context
awareness and adaptation. The design of the extended
browser is shown in Figure 6.

The required changes have been threefold. First, we
have added a context manager, which enables context
awareness within the browser. This manager is
responsible for registering interest with the monitoring
agent in certain types of context event and handling event

P refe renc e
R epo sito ry

B row ser
E ngin e

U ser
In terface

W eb Serve r

B row ser

C o nte xt
an d

Preferenc e
M e tad ata

B row ser
En gin e

U s er
In terfa ce

W eb S erve r

B row ser

C o nte xt m an age r

C o nte xt m on itor

Figure 5. Original browser architecture Figure 6. Architecture of the adaptive browser

notifications. The latter task involves the propagation of
context information to the metadata store and the
invocation of appropriate adaptation mechanisms in the
user interface and browser engine components.

The second modification involved the extension of the
preference repository to support additional types of
browser metadata, namely context information supplied
by the monitoring agent.

Finally, the user interface and browser engine
components were augmented to support the types of
adaptation outlined in Section 3.3.

We have been careful to ensure that the adaptive
browser can be easil y extended to support new adaptation
policies that may be required in the future. The support
for extension is twofold:
• The design of the context manager component

incorporates plug-in modules in order to facili tate the
addition of arbitrary types of context adaptation.

• The decoupling of the user interface from the core
functionality of the browser makes it relatively easy
to substitute entirely types of user interface in the
future. We envisage the use of dynamic adaptation
between entirely different types of interfaces, for
example, between a GUI and a voice-based interface.

4.2 Adaptive Web server

We have implemented a server that supports our
extensions to HTTP/1.1 and RVSA/1.0. Our server
extends the SimpleHTTPServer class provided by the
Python library module of the same name.

Currently, the server supports adaptation to network
bandwidth and the client’s display type. As we envisage
that our browser may support other types of adaptation in
the future, we implement the support for each context
type as a plug-in module. The plug-in encapsulates the
interpretation of context information and the computation
of quality factors for variants.

4.3 Monitoring agent

Although the monitoring of context is not our primary
interest, we have developed a monitoring agent that
supplies the browser with information about its
environment. The monitor currently supports tracking of
the display type, as well as monitoring of the bandwidth
and connection status of network links specified by the
client. Monitoring of the display is performed using the
Unix xdpyinfo util ity, while the network is monitored
using bing, a program based on ping which estimates the
throughput on a link by measuring the roundtrip times for
ICMP echo requests. The monitor also provides a
graphical interface through which the user can manipulate
resource data for simulation purposes.

5. Evaluation

Through our own experiences with the browser we
have verified that the adaptation mechanisms introduced
into the prototype have generall y improved its
performance over the original version, particularly when
considering download latency and optimisation of screen
space. However, we have yet to perform usability trials
to determine whether the improved performance translates
into improved usabilit y. The usability trials should
address the following issues, among others:
• Does the decision to balance the bandwidth and

display characteristics against the fidelit y of variants
improve the browsing experience?

• Is complete transparency of adaptation desirable, or
does it instead make behaviour appear erratic?

6. Related Work

There have been several significant contributions in
the area of adaptability. The Coda distributed file system
[7], developed at Carnegie Mellon University,
demonstrated the use of application-transparent
adaptation in dealing with disconnected hosts. This
research formed the basis for Odyssey [8], a set of
extensions to NetBSD that provide support for application
adaptation. Part of the work on Odyssey demonstrated
how distillation could be used to support adaptation of
information used by a Web browser. Information fetched
by the Web browser was intercepted by a distil lation
server and transformed to the level of fidelit y requested
by the browser’s agent, called the cellophane. All
adaptation occurred externally and transparently to the
browser. While this strategy has the advantage that it
involves no modifications to the browser itself, it is more
limited in the types of adaptation that can be achieved
than our approach, in which the browser plays an active
role in the adaptation.

Mobiware [9], developed at Columbia University, is a
middleware toolkit that supports adaptation to varying
network conditions. It provides an infrastructure of
programmable network objects that can be manipulated to
provide applications with their desired Quality of Service
(QoS). Applications specify their QoS requirements
through a QoS API, in the form of a utilit y function and
an adaptation poli cy. The utility function expresses the
level of satisfaction of the application with different
levels of bandwidth, while the adaptation poli cy
determines how the application’s bandwidth allocation
will vary as resource availability changes. Mobiware
concentrates solely on network-related QoS.

Research at Xerox PARC has focussed on context-
based adaptation of applications [10]. A framework has
been developed to support this type of adaptation. This is
based around the dynamic environment server, which

manages environment variables and delivers updates to
clients who have subscribed to the server as the variables
change. There is typicall y one server per context, where a
context might be a room or work group.

In addition, some work has been carried out on the
development of Web browsers for mobile devices, such as
PDAs. These browsers include HandWEB, Palmscape
and Top Gun Wingman [11], designed for the PalmPilot,
and PocketWeb, for the Apple Newton MessagePad.
PocketWeb and Top Gun Wingman are able to support
limited adaptation by connecting to a special proxy,
which can perform some transformations of HTML
documents and images to make them more suitable for
display on a PDA. The HotJava browser can also be used
on various mobile computers. HotJava is a lightweight
browser that can be staticall y configured for mobile
devices through customisation of the user interface and
installation of new content and protocol handlers. All of
these browsers incorporate some static mechanisms for
coping with a mobile environment, however, unli ke our
browser, none are capable of dynamic adaptation to
changes in characteristics of the network and local
machine. The adaptation mechanisms supported by our
browser allow it not only to execute on a range of
different computers, but also to cope with run-time
context changes.

The DISCIPLE application framework [12], based on
Java components, supports adaptation of XML documents
used by collaborative applications. It provides
transformation of documents according to client profiles,
thus allowing collaborators to have different views of the
same data depending on their resource availability, QoS
requirements and personal preferences. The focus of the
framework is on data adaptation, whereas we consider a
broader set of adaptation types.

7. Concluding Remarks

In this paper, we have described types of adaptation
that can be employed to allow a Web browser to respond
to changes in context and presented our design and
implementation of an adaptive Web browser. We have
considered types of adaptation that can be carried out
internall y within the browser, as well as types that require
the cooperation of the Web server. In the latter case,
protocol support is required for the communication of
context information between the cooperating parties. To
meet this requirement, we have extended the HTTP/1.1
protocol with the context header. Moreover, through our
extensions to RVSA/1.0, we have demonstrated how the
information carried in the header can be used to influence
the server's behaviour when faced with a choice between
several variants.

We have buil t prototypes that currently support
adaptation to bandwidth and display variations, as well as
network disconnections. The adaptation mechanisms

generally increase performance, however, usabil ity trials
are required to determine whether the performance
improvements in fact lead to enhanced usabil ity.

8. References

[1] Satyanarayanan, M. and Narayanan, D., “Multi-Fideli ty
Algorithms for Interactive Mobile Applications”, Proceedings
3rd Intl. Workshop on Discrete Algorithms and Methods in
Mobile Computing and Communications, Seattle, Washington,
USA, August 1999.

[2] Cheverst, K., Davies, N., Mitchell, K. and Friday, A., “The
Role of Connectivity in Supporting Context-Sensitive
Appli cations” , Proceedings 1st International Symposium on
Handheld and Ubiquitous Computing, Karlsruhe, Germany,
September 1999.

[3] Fielding, R. et al., “Hypertext Transfer Protocol --
HTTP/1.1”, Internet RFC 2616, June 1999.

[4] Reynolds, F. et al. (eds), “Composite Capability/Preference
Profiles (CC/PP): Structure”, W3C Working Draft, 21 July
2000.

[5] Holtman, K. and Mutz, A., “HTTP Remote Variant Selection
Algorithm -- RVSA/1.0”, Internet RFC 2296, March 1998.

[6] Bond, A., Gallagher, M. and Indulska, J., “An Information
Model for Nomadic Environments” , Proc. 9th International
Workshop on Database and Expert System Applications,
Vienna, Austria. IEEE Computer Society, pp 400 - 405, August
1998.

[7] Satyanarayanan, M., “Mobile Information Access” , IEEE
Personal Communications, Vol. 3, No. 1, February 1996.

[8] Noble, B. and Satyanarayanan, M., “Experience with
adaptive mobile appli cations in Odyssey” , Mobile Networks and
Applications, Vol. 4, 1999.

[9] Oguz A. et al., “The Mobiware Toolkit: Programmable
Support for Adaptive Mobile Networking” , IEEE Personal
Communications Magazine, Special Issue on Adapting to
Network and Client Variabil ity, Vol. 5, No. 4, pages 32-44,
August 1998.

[10] Schilit, B., Adams, N. and Want, R., “Context-Aware
Computing Appli cations” , Proc. Workshop on Mobile
Computing Systems and Applications, pp 85-90, Santa Cruz,
USA, December 1994.

[11] Fox, A. et al., “Experience With Top Gun Wingman: A
Proxy-Based Graphical Web Browser for the USR PalmPilot”,
Proc. IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing (Middleware '98),
Lake District, UK, September 1998.

[12] Marsic, I., “A Software Framework for Collaborative
Appli cations” , Proc. Collaborative Technologies Workshop,
Rochester, USA, November 1999.

