Adaptive Middleware for Heterogeneous Defence Networ ks - an Exploratory

Simulation Study

B.McClure,7§ J.Indulska,§ T.A.Auf

TDefence Science and Technology Organisation, PO Box 1500, Salisbury, SA 5108, Australia.
sDepartment of Computer Science and Electrical Engineering, The University of Queensland,
Brisbane, Qld 4072, Australia.

email: Mcclures@ozemail.com.au, Jaga@csee.uq.edu.au, Andrew.Au@dsto.defence.gov.au

Abstract

This paper presents the design and evaluation through a dis-
crete event simulation of an ODP-based Adaptive Comput-
ing Architecture which manages network resources in large-
scale heterogeneous error-prone networks. The emphasis is
given to network (communication) adaptation of this archi-
tecture simulated for an exemplar defence network. The re-
sults show that, for this network, the architecture provides
significant improvement in terms of higher priority requests
meeting their QoS requirements and adaptation to link fail-
ure under heavy link utilisation. In addition, link utilisation
is lower with the architecture active.

1. Introduction

Today, to fulfil the operational requirements of modern
battlefield interoperability, defence organisations require
the deployment of distributed applications such as video
on the Web, situational awareness and collaborative plan-
ning. Existing system and application architectures, which
typically assume LAN quality networking, do not readily
accommodate these new technologies. Further problems
emerge when this situation is combined with the mix of het-
erogeneous networking technologies and WAN links used
by many large organisations [1, 2].

Defence networks comprise communication technolo-
gies ranging from Giga-bit fibre-optic links to satellite chan-
nels and HF radio links. Network communications proto-
cols used include ATM, IP, X.25 and various military “link”
protocols. There are some special requirements that impact
on defence networking. First the network must provide a
minimum level of service at all times — the network needs
to be resilient to intentional damage; e.g. physical or elec-
tronic attacks on communications links or nodes should not
bring down the entire network. Second, the network should
degrade gracefully when it is damaged or overloaded. In
particular, the network should ensure that at least the most

critical communications traffic is carried. Secondary re-
quirements include ensuring that the network is secure, cop-
ing with intrinsically “poor” communications links and ac-
commaodating enforced communications silence. The di-
verse nature of defence networks and the increasing use
of communications intensive applications for critical tasks
present significant problems. In essence, there is a real need
to be able to manage the use of network and communica-
tions resources so that it is possible to dynamically adapt to
changes in service requirements and network conditions.

There has been extensive research in the area of Qual-
ity of Service (QoS) management in computer networks
[3, 4, 5] and in particular Schill et al. [6] describe a net-
work topology model that incorporates round-trip delay es-
timates and link costs and specifies the data-link protocols
used. However, none of the above work adaquately ad-
dresses the full scope of the problem in the defence envi-
ronment. Supporting distributed applications in a defence
network requires a comprehensive architecture for resource
management, capable of selectively providing guaranteed
service according to an over-arching policy. A piece-meal
solution relying on applications and services working coop-
eratively is not sufficient. Policy based resource manage-
ment needs to form an integral part of the distributed com-
puting infrastructure.

We propose an Adaptive Computing Architecture (ACA)
to manage enterprise-wide network resources according to
predefined adaptive policies. These policies support adap-
tation of client — server bindings and use of network re-
sources to address problems that arise from changes in net-
work availability and demand. The ACA is very flexible in
that it supports changes to policies and the representation of
the enterprise network at runtime and has an adaptive mech-
anism that can be tailored to particular needs. A limited
“proof of concept” prototype has been developed [7], which
implements some of the ACA functions on the CORBA dis-
tributed platform.

The focus of this paper is on the ability of large heteroge-
neous networks to meet QoS requirements of high priority
requests. In the absence of appropriate adaptability strate-
gies, a system’s response to increased load or reduced ca-
pacity will be unacceptable application performance, rejec-
tion of critical service requests, or even total network col-
lapse; e.g. Ethernet “meltdown”. Adaptation in the ACA
can be triggered in two ways; by changes in availability of
network resources, or by changes in demands on network
resources from the objects that use them. The mechanisms
for adaptation can be grouped into three broad classes: net-
work adaptation, binding adaptation and application adap-
tation.

Network adaptation covers the allocation of communi-
cations resources to application objects and their dynamic
adjustment. The infrastructure initially selects communica-
tions paths, and allocates resources to a binding between
objects to satisfy their QoS requirements. Later, it may
adjust the route and resource allocations, possibly by pre-
emptively reallocating resources to higher priority tasks.

Client — server binding adaptation covers a variety
of mechanisms that mediate the objects’ communication
needs, statically or dynamically. When a client object re-
quests a service from “the network” the request can typ-
ically be satisfied using objects available at various loca-
tions. The ACA can manage network load and requested
QoS by selecting the most favourably located service ob-
ject. In some cases, filter or adaptor objects can be inserted
between the client and service to adjust network traffic or
cope with interface mismatches.

Application adaptation covers cases where the applica-
tion objects themselves need to be involved in the adaptation
process. For example, when a client object makes an initial
request for service, it may need to negotiate QoS measures
with the networking infrastructure. Subsequently, the ACA
may notify the client that the QoS measures have changed,
offering it the chance to adapt to the new measures or ter-
minate.

The ACA directly supports network adaptation and bind-
ing adaptation and provides the hooks for application adap-
tation. Our approach relies on having knowledge of the
network and the QoS that it is capable of providing at any
given time. For this purpose, a method for modelling net-
work topology and its static QoS measures (potential QoS)
has been defined. To deal with the scalability problem, the
method allows modelling at various levels of abstraction.
This network topology and QoS information is augmented
with dynamic network configuration and load information
to achieve a description of the current network state.

In order to validate network adaptation of the ACA it
was necessary to test it on a larger network than that used

by our inital prototype. Defence Science and Technology
Organisation (DSTO) in Australia is currently building an
Experimental Command, Control Communications and In-
telligence (C3I) Technology Environment (EXC3ITE). This
environment is an interstate heterogeneous network infras-
tructure including satellite links. The EXC3ITE network
will support a number of emerging CORBA based appli-
cations. Potential users of the EXC3ITE network require
methods for moderating the use of network resources in this
environment. Therefore, the EXC3ITE network has been
modelled as a realistic exemplar heterogeneous defence net-
work. A simulation model has been built to test complex
functionality of the network adaptability before a full ACA
implementation is considered for EXC3ITE.

This paper presents a qualitative assessment of the per-
formance of the ACA over the EXC3ITE network compared
to the performance without the architecture. In particular,
the ACA is assessed with regard to: i) overall satisfaction of
application QoS requirements taking priority into account,
ii) benefits to the individual users competing for network
resources subject to i), iii) bandwidth utilisation of the net-
work and iv) validity of our model of topology and QoS.
Our simulation results show that i) and ii) are better for high
priority requests when the architecture is active, for medium
to heavy network loads. Secondly, we show that the network
utilisation will be reduced when the ACA is active. This is
a result of connection requests being denied, delayed or re-
duced in response to network overload and is one cost of
providing better performance to higher priority requests.

2. Overview of the Adaptive Comput-
ing Architecture

The ACA is based on the Open Distributed Processing
(ODP) framework for building distributed applications. It
therefore assumes that supporting services are available in
the infrastructure such as the Trader and Type Manager.
These ODP functions provide a broker service, and manage-
ment of interface type descriptions and relationships (such
as runtime type compatibility checking). An adaptive net-
work resource management framework needs to maintain
three key kinds of information about the system. First, man-
agement policies need to be modelled to allow adjustments
of policy at runtime. Second, the interface specifications
and QoS requirements of applications and services need to
be modelled so that the management system can support a
dynamic environment of communicating objects. Finally,
network topology and QoS measures need to be modelled
so that the management system can make appropriate deci-
sions based on network conditions.

Figure 1 is a high-level logical depiction of our resource
management architecture whose functionality is provided as
a distributed set of services. At the centre of the architec-

Application

Policy Service
Adaptability
Policies

Topology

Editor ‘

Application
Requests

Adaptive QoS Manager

I

Network QoS Manager ‘

Type Manager,
Trader

Monitoring Information,
Resource Allocation

‘ Network Reality ‘

Figure 1: Adaptive Computing Architecture.

ture is the Adaptive QoS Manager (AQM) that manages re-
sources to satisfy application requirements according to cur-
rent adaptation policies and network conditions. The Policy
Service stores the current adaptation policies. The Network
QoS Manager (NQM) maintains the system’s model of the
network topology, QoS and the current state of the network.
The Local Monitor performs monitoring of QoS delivered
to applications. The Type Manager is an ODP service that
is used here to store interface and QoS descriptions for ap-
plications and services. The Trader is another ODP function
that manages current offers of service, and matches them
against requests from clients via the AQM.

2.1 Adaptive QoS M anager

The function of the Adaptive QoS Manager (AQM) is to
establish and manage bindings between application and ser-
vice objects. While these bindings are made at the request of
individual client objects, the AQM is responsible for manag-
ing enterprise resource usage according to the current poli-
cies. This is done by mediating new requests for service
and actively managing resource usage by existing bindings.
If network resources are not available (and policy dictates),
the AQM may take action to manage resource usage. In the
worst case, it can pre-emptively shut down an existing bind-
ing from another application to free up resources. The AQM
can also adjust an existing binding to optimise its resource
usage. Priority is an important concept here because it is
used to determine which requests are pre-empted or rejected
first when resources are insufficient. In this work, priority
is being associated with a binding request and priorities are
restricted to three levels: high, medium and low.

2.2 Policy Service

The Policy Service stores the adaptation policies that

specify how and when the Adaptive QoS Manager should
adapt to changing resource availability. Our model for adap-
tation policies is based on Sloman’s policy language [8].

2.3 Network QoS M anager

The Network QoS Manager is the component in the
adaptive resource management architecture that holds
knowledge of the state of the network. This knowledge
consists of two distinct parts. Firstly, the nominal network
topology and its associated QoS measures (e.g. link capac-
ities) are expressed using the Network QoS Specification
Language (NQSL). Secondly, the NQM must be informed
of the current network load by management interfaces on
critical links and gateways. The NQM may also receive
monitoring information from Local Monitors (LM) regard-
ing the QoS delivered to established bindings. The other
functions of the NQM include using the information that it
gathers to perform route selections and preemption on the
basis of required QoS parameters. This function is used by
the AQM to allow it to make optimal service selections if
there are several servers available.

2.4 The Model For Network Topology and QoS

The ACA depends on having detailed information about
the topology of the network and its QoS and functional char-
acteristics in order to make adaptive decisions. The net-
works to be represented may be large and heterogeneous.
For these reasons, a Network QoS Specification Language
(NQSL) has been defined to represent network topology and
QoS at various levels of abstraction. NQSL describes net-
works in terms of hierarchical QoS domains, logical links,
elements and gateways [9].

3. Smulation M odd

The EXC3ITE network being modelled consists of 8
LANs connected by a mixture of satellite and ATM links
depicted in Figure 2. The satellite links are those links emi-
nating from truck-mounted nodes 1 and 2.

Each LAN has a number of workstations connected to
an Ethernet bus. There are several unique characteristics of
the EXC3ITE network which result in the effective ATM
throughput being limited to 512 Kbps and reduce the rout-
ing ability of the network. We assume that all traffic on
the LANs and WANSs originate from the applications that
are using the ACA. The IP traffic is carried through the net-
work using Classic IP. Two of the LANSs are connected to
mobile trucks with satellite dishes. These trucks are packed
up, moved and re-established at a new location from time to
time. Two other LANSs are “relocatable”, able to be packed
up in boxes and connected to different points in the com-
mercial ATM networks. Neither of these forms of mobility
result in dynamic address changes. However, the mobility
of the trucks may result in changes to the available QoS.

&w) s — :
@

1
- Rel ocage N, Darwi n
o
15

f A

NEA

Rel ocat abl e

tr uck- mount e 1 \

-30
)]
[

[e

127.5 131. 25 1135 1138. 75

A&

WaBrsfhier mens B4gtE 25 150 15

Figure 2: EXC3ITE Network Layout.

The OPNET commercial network and distributed system
simulation package has been used to support the simulation.
In particular, the example TCP, IP and Ethernet models sup-
plied with OPNET have been used as the basis of the net-
work simulation (to simulate communication between both
applications and ACA servers). These example models in-
corporate most functionality of the relevant standards for
each of these communication protocols [10].

3.1 Representation of the AQM in the simulation model

The simulation model of the ACA represents an imple-
mentation of the architecture. This includes some design
decisions influenced by the network, applications and poli-
cies represented that are not inherent in the architecture it-
self. The AQM is implemented as two distributed compo-
nents. The first part is a local proxy, which together with
the policy service is present on all workstations. This part
of the AQM implements policies local to the workstation
and provides an interface between applications and the ar-
chitecture. Second, aspects of the AQM which have wider
impact form part of a LAN proxy. For example, policies that
pre-empt bindings from other workstations on LANSs have a
wider impact. There is one LAN proxy on every LAN.

3.2 Representation of the NQM in the simulation model

The NQM s also implemented in a distributed manner
and is present on one workstation in every LAN (ie the LAN
proxy). The NQM stores the topology and QoS informa-
tion based on the NQSL representation of the EXC3ITE
network and updates from the monitoring services. The
NQM obtains dynamic information about the state of the
network from two sources: network management and the
Local Monitoring function. Network management provides
information about changes to network topology (eg: links
going down) and QoS available on the links. Local Monitor-
ing of connections provides information about whether ap-
plications are receiving the requested QoS and can be used
to determine QoS available on outgoing links from a LAN.
Information regarding the traffic load of non-adjacent links
is obtained from all the other NQM components.

The NQM receives connection requests from the AQM,
with QoS requirements and priority. The NQM creates
these connections and can implement source routing and
pre-emption if policy dictates. LAN proxies exchange lo-
cal information such as bandwidth, delay, priority and error
information when significant changes occur in the network
state. From this information each NQM instance builds up
a QoS picture, which in this particular simulation, only con-
cerns the WAN links. When the NQM is requested to create
a connection, it uses its QoS and topology information to

determine a high-level route and forwards a request through
each LAN proxy along the path. This request may spec-
ify pre-emption if appropriate. The request is passed to
the destination and returned to the source. If the selected
path is blocked, the rejecting proxy may attempt an alter-
nate path, which may trigger further policy action within
the AQM. If pre-emption is required, the relevant LAN
proxy will be consulted and (according to policy) it will se-
lect the best connection(s) for pre-emption. The process of
pre-emption itself may require communications back to the
LAN proxy originating each connection to be pre-empted.
If the AQM/NQM cannot find an alternate link or other so-
lution to satisfy the application QoS requirements, the pre-
empted binding will be terminated.

3.3 Adaptingtolink failures

Link failure has the potential to undermine the reserva-
tion and moderation that the ACA performs. Such failure
can be detected by normal network management platforms
which are able to notify the ACA on each side of the net-
work partition. The response of the ACA to link failure is
to see whether some of the connections that previously used
the failed link can now be re-routed. This is particularly
important for high-priority connections. Connections that
cannot be handled this way are terminated. If necessary,
connections on other links will be preempted to make room
for the high-priority connections. Note that connection re-
routing is performed without informing the application and
without tearing down the connection.

Some of the functionality of this protocol duplicates ex-
isting network protocol capabilities such as resource reser-
vation of ATM and RSVP, and priorities of IPv6. In net-
works where ATM and RSVP are ubiquitous, the role of the
NQM could be reduced. In particular, source routing may
not always be available or the priority based queueing avail-
able in some routers may be required. However, even ATM
and RSVP do not provide the binding pre-emption that is
required. In an environment where source routing is not
available, high-level routing can be performed in software
(at a cost in processing power and with limits on through-
put). The Defence networks that are considered here are
heterogeneous and therefore require the higher level man-
agement of bindings present in the ACA. The ACA has been
designed to allow the policy implementation to determine
how source routing is applied. Also, source routing is serv-
ing two functions in the simulated architecture: supporting
control of QoS delivered and enabling a simple algorithm to
determine which bindings to preempt. For the simulation it
is assumed that all bindings are being source routed.

3.4 Representation of applications and policies in the
simulation model

The applications generate requests for CORBA client —

server bindings with QoS associated requirements and pri-
ority according to an assigned probability distribution func-
tion. CORBA RPCs are represented as a series of TCP
segments transmitted from one application to another, pro-
cessed for some time and then returned as another series
of TCP segments. The requests are judged successful if the
TCP connection completes the transmission in the requested
time. The requests are handled by the AQM as described
above. Three applications were modelled: i) map/image re-
trieval, ii) messaging and iii) track updates for collabora-
tive situation display. These applications are represented on
each client workstation in the simulated network. In addi-
tion, there is one LAN proxy workstation in each LAN and
most LANSs have a server workstation. The server work-
station simulates the server component of each application.
The applications generate application invocations according
to their assigned Probability Distribution Functions (PDF)
that determine the time between generations of CORBA
RPCs.

There are a number of policies in the ACA that affect the
QoS received by applications. In an implementation of the
ACA, these policies would be represented using the notation
of [8]. The policies used in the simulation are presented here
in a high-level form:

i) Perform IP source routing on all bindings in order
to meet the QoS requirements, ii) Select the best available
server given the QoS requirements and topology informa-
tion, ii) Ensure that each track update is transferred within
the specified time constraints or abandon the binding and
return an error, iii) Ensure that high priority requests have
precedence over lower priority requests, iv) If needed to
meet the QoS requirements of a high priority binding, pre-
empt a lower priority binding.

3.5 Other modelling issues

The node model of each client workstation in the simu-
lation is depicted in Figure 3. As described above, this in-
cludes the local AQM, Local Monitoring and Policy Service
which cooperates with the AQM, NQM and policy service
components on the LAN proxy.

Delays introduced by processing of packets in the
CORBA layer are not modelled. This is reasonable because
simulations with and without the ACA will be subject to
the same assumption and because communications delays in
general are expected to be more significant than processing
delays. However, based on the computational complexity
of the routing algorithm [11] and the size of the network,
the estimated route calculation time is 20 x seconds. The
Trader(Tr) and Type Manager (Tm) are modelled in a sim-
plified manner — interactions between components of these
services are not modelled as this will be the same for sim-
ulations with and without the architecture and occurs only

Image Client

Message Client Track Client

L]

(AQM, Policy Service)

Figure 3: Workstation node model.

once per CORBA RPC or less.

It is assumed that in general, only a small proportion of
the total traffic is of high priority and that all applications
are well behaved. That is, no applications consume more
bandwidth than they have been allocated. This is ensured
by inserting appropriate delays between TCP packet trans-
missions.

4. Simulation Tests and Results

Simulation runs were performed to assess the perfor-
mance of the ACA over the EXC3ITE network, where the
satellite links were assumed to have an error rate of 10~
and a delay of 250 msec. The required QoS and priority
level are specified in each connection request. Each request
was then sent to one of the servers on remote LANS selected
at random. Three applications were modeled, including im-
agery, messaging, and track update applications. Table 1
depicts the parameters of these applications, of which the
priority level is uniformly distributed with 1 percent high,
10 percent medium and 89 percent low. Note that each ap-
plication waits for a request to complete before starting a
new request. Therefore, “time between calls” is the time
from when one request completes to when the next request
is issued.

Image Message Track
Update

Size (KB) | 1000-5000 10-125 10-150
Time Mean: 26.9 Mean: 26.9 Fixed
between Variance: 64 | Variance: 64 | at 30
calls Distribution: | Distribution:
(Seconds) | Normal Normal
Delivery 50-500 300 (low) Fixed
time 150 (med.) at 30
(Seconds) 100 (high)

Table 1: Parameters of Applicationsin the Simulation.

Each simulation ran for 60 minutes of network time,
which took up to 54 hours to run on an UltraSparc 5. The
reason these simulations took so long is that the full func-
tionality of TCP, IP, ARP and MAC layer protocols are all
being simulated using the OPNET models of these proto-
cols. Normal operations in the EXC3ITE network were sim-
ulated with and without the ACA.

The simulation results are shown in Figure 6, where the
success rates of connection requests are plotted against the
run count in a set of simulation runs. Five simulations were
run with identical parameter settings but different seed value
for the sake of randomness. The non-ACA results for the
different priorities have been combined in Figure 4 since
without the ACA each priority level is treated the same.

120 -

100

80

40

2
o —=— ACA High
e e S -+~ ACA Med
ﬁ =--ACA Low
8 -_— e T —o— Non-ACA
@

20

T T T T
1 2 3 4 5
Run Number

Figure 4: Percentage of Successful Connection Requests.

The results show that the QoS requirements of high
and medium priority connections were more likely satis-
fied when the ACA was active. In the absence of the ACA,
the bandwidth was shared by all incoming requests, and the
QoS requirements of about half of these connections were
met. The low priority connections were more likely to have
their QoS requirements met, even when the ACA was active
because some of the low priority requests were rejected by
admission control or preemption, resulting in less traffic and
lower link utilisation.

Figure 5 depicts the average link utilisations for the sim-
ulation runs with and without the ACA, demonstrating the
load balancing effect of the ACA. In the presence of the
ACA, the traffic was more evenly distributed over the net-
work. The simulation results show that the ACA diverted
more traffic to otherwise under-utilised satellite links, while
reducing possible overload at non-satellite links.

Simulations were also run with failure of a selected link
for a period of 1000 seconds to test the operational re-
silience in the presence of the ACA. Table 2 depicts the re-

0.7
s 0.6 I
T 05 |
2
E] 0.4 5 I Average util - ACA
g) 0.3 W Average util - NOACA
©
5 0.2 4
>
< 0.1 4
0 I
6*69’&6@"}{7 . "o“'b F LSS
0707 O/ 9 90/ DR e
\6>~o> \>«,@'/p@/©>¢§o/‘°/@/@/
RN F\Z S Q7.
S o Q (S) (\6 (o @§&°$ Q&/Q&/
Link Name (* indicates Satellite Link)

Figure 5: AverageLink Utilisation.

sults of this run and a similar run, without the ACA being
active.

Priority | With ACA | Without ACA
High 96 % 21.7%
Medium | 85.1 % 40.7 %
Low 59.8 % 39.1%

Table 2: Connection Success Rateswith Link Failures.

These results show that the ACA has achieved similar
results in the presence of links failures albeit this is inferred
from a small data sample.

5. Conclusions

Today, to fulfil the operational requirements of mod-
ern battlefield interoperability, defence organisations re-
quire the deployment of distributed applications. Existing
system and application architectures, which typically as-
sume LAN quality networking, do not readily accommodate
these new technologies. Further problems emerge when this
situation is combined with the mix of heterogeneous net-
working technologies and WAN links used by many large
organisations. This paper has presented an Adaptive Com-
puting Architecture which enables policy driven adaptation
to changes in resource availability in heterogeneous defence
networks. The design and results of a discrete event simu-
lation of this architecture in the DSTO EXC3ITE network
have been presented, focussing on network adaptation.

The results show that, for the EXC3ITE network, the archi-
tecture provides significant improvement in terms of higher
priority requests meeting their QoS requirements and adap-
tation to link failure under heavy link utilisation. In addi-
tion, the presented architecture leads to lower link utilisa-
tion.

References

[1] J. Zinky, D. Bakken, and R. Schantz, “Overview of quality
of service for distributed objects,” in IEEE Dual Use Tech-
nologies Conference, May 1995.

[2] M. Davisand A. Downing, “Adaptable system resource man-
agement for soft real-time systems,” in Symposium on Com-
mand and Control Research and Decision Aids, June 1994.

[3] V. Bharghavan, “Challenges and solutions to adaptive com-
puting and seamless mobility over heterogeneous wireless
networks,” International Journal on Wireless Personal Com-
munications: Special |ssue on Mobile and Wreless Network-
ing, March 1997.

[4] N. Yeadon, A. Mauthe, F. Garcia, and D. Hutchison, “QoS
Filters: Addressing the heterogeneity gap,” in European
Workshop on Interactive Distributed Multimedia Systems
and Services, (IDMS96), March 1996.

[5] M. Satyanarayanan, “Mobile information access,” |EEE Per-
sonal Communications, vol. 3, February 1996.

[6] A. Schill and S. Kummel, “Design and implementation of
a support platform for distributed mobile computing,” Dis-
tributed Systems Engineering Journal, vol. 2, pp. 128-141,
March 1995.

[7] S. Crawley, J. Indulska, and B. McClure, “ODP-based adap-
tive management of network resources in heterogeneous de-
fence networks,” in IEEE Ninth International Workshop on
Distributed Systems Operations and Management, pp. 25—
38, October 1998.

[8] M. Sloman, “Management issues for distributed services,”
in IEEE Second International Workshop on Services in Dis-
tributed and Networked Environements, pp. 52-59, 1995.

[9] B. McClure, J. Indulska, and S. Crawley, Adaptive Comput-
ing Architecture for Heterogeneous Defence Networks. Uni-
versity of Queensland, Internal Report UQ-TR-429, Febru-
ary 1998.

[10] K. Archie, G. Campbell, G. Cathey, A. Cohen, and R. Finn,
OPNET Modeller Example Models Manual: Protocol Mod-
els. Mil3 Inc, 1994.

[11] J. Van Wyk, Data structures and C programs. Addison Wes-
ley, 1988.

