

Redundant vs. Imperfect Positioning for Context-dependent Services

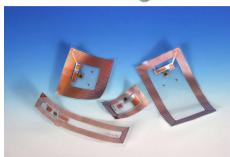
Tom Pfeifer

Telecommunications Software & Systems Group [TSSG] Waterford Institute of Technology [WIT], Ireland

TPfeifer@tssg.org

1

- Positioning as a driving factor for ubiquitous / pervasive applications
- III numerous technologies / devices developed in the lab
- few of them are actually used commercially
- **III** some combinations and fusion approaches described typically 2 technologies
- **III** pervasive, extremely cheap devices
- visual tracking / recognition
- biometrics
- wireless coverage
- III new quality of interworking position and context aware systems
- massive redundancy
- synergetic heterogeneity
- Iself-learning and self-healing vs. misleading, wrong and outdated information
- **II** tailor positioning + confidence to application requirements



Widespread commercial systems

Radar (ships, aircrafts)

GSM/3G cell/subcell positioning

RFID (transponders used for decades, new momentum with EPC)

Location inference

technologies not primarily developed for this purpose, but bearing implicit information

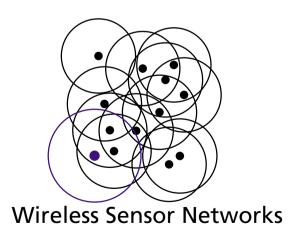
Surrent Cell

arrow Beam Antenna Plane

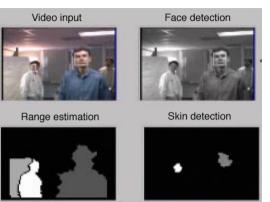
- readers (at fixed positions) for magnetic swipe cards or chip cards
- III network addresses (IP, MAC) can be mapped to positions
- Wifi software positioning

(cellular access points, signal strength triangulation, mapped signal fingerprints)

BlueTooth devices can be recognized in proximity to each other



Niche markets and laboratories


Ultrawideband Positioning (Ubisense)

Biometric devives

Weight/force measuring (Active Floor, Smart Carpet)

Visual Tracking/Recognition

Ultrasonic Devices (Active Bat, Cricket Compass)

Recursive

Location Fusion

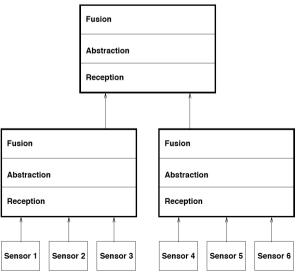
Imperial College, London]

III three layer stack

[Leonhardt/Magee

its self

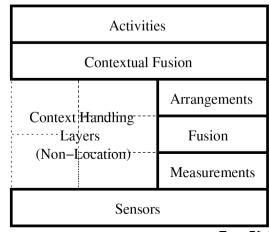
Fusion of location data


III "the use of multiple location systems simultaneously to form hierarchical and overlapping levels of sensing ... to increase accuracy beyond what is possible using any individual system" [Hightower/Borriello]

Single device fusion:

PointMan[™]

- GPS + Dead Reckoning
 - tilt-compensated magnetic compass, electronic pedometer and III can then be layered on to barometric altimeter



Six layered model

[Hightower/Borriello, Intel research]

- OSI-network-layer inspired
- location sensor as well as context information fusion
- proposed as a replacement to "monolithic" systems

applied to IR / Ultrasound fusion

Tom Pfeifer

DRM®-III OEM Module

Imperfection

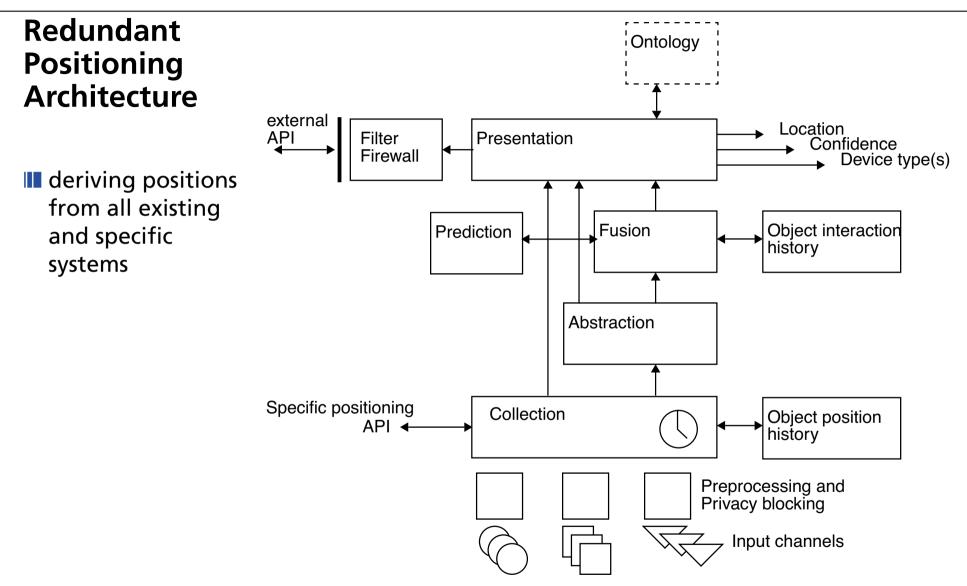
Errors and misleading information

Confidence: multiple aspects: not a single percentage value

Human recognition

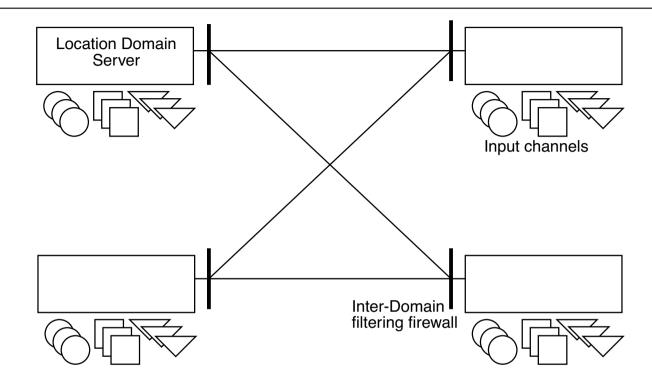
Technical application

different classes of errors occur:


- geometrical uncertainties, dilution of precision (the only class considered so far)
- mismatch of temporal expectations (temporal validity)
- change of relation between objects (incidentially or intentionally)
- Image number of individual characteristics: facial properties, size, typical glasses, style of clothing, voice, ...
- II if one of these properties does not match,
 - recognition succeeds due to the *redundancy* of the other,
 - compensating misleading information
 - adjust in a learning process to new values,
 e.g. the new hair cut or other clothing.

III redundant positioning

- vast amount of sensing nodes of different kind
- contributing to the whole image, consideration of misleading and wrong information



Inter-Domain communication

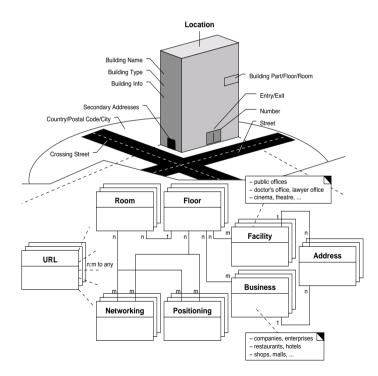
- loosely coupled cooperating domains
- peer to peer location information network
- message format / protocol for heterogeneity of data:
 - positions (geographical, room-relative, mapped)
 - characteristics of objects (RFID, visual image, extracted features, measurements, etc.)
 - biometric data sets,
 - object interactions
- filtered and firewalled (different authorization levels)

Security and privacy

- data collection where acceptable?
- early avoiding of unneccessary collection
- III filtering and firewalling, restricted access

Testbed at Waterford Institute of Technology

 Exploiting all these sources
 -> critical mass of redundant data for implemention and experiments


- Wifi positioning technology (software based) already deployed in WIT campus, used for mobile groupinteraction experiments together with psychologists (NOMAD), adding triangulation hardware now
- existing partnership with O2 GSM/GPRS operator: sub-cell location data for campus area nearly complete penetration of GSM/GPRS handsets among the students
- **GPS** devices
- Ultrawideband positioning in office spaces
- RFID reader technology is being installed at numerous points around the campus, tags dispensed in a large number (mobiles, office property, teaching material, etc.).
- Visual tracking cameras for selected labs
- dual Swipe/Smart Card campus card in use, cash debiting in a central database -> data about the specific cash terminal as positioning

III patch-panel database for IP connection

Research and Implementation

Data model

III different areas of interest:

10 cm within a building distinguishes two rooms

- Location model required:
 - longitude / latitude
 - different geodetical models of the earth
 - mapping to street locations
 - floor / room / sub-room addressing within the building

Modelling

- different fusion algorithms
- evaluation of approaches in logistics
 Mathematical Analysis and Simulation
- processes a vast amount of data
- Traffic analysis
- continuity and timeliness of the arriving data

Interworking with other classes of context