
A design model for context-aware services based on
primitive contexts

Andreas Pappas
Electronic & Electrical

Engineering Department
University College London

and BT Exact
+44 (0) 1473 649511
apappas@ee.ucl.ac.uk

Stephen Hailes
Computer Science

Department
University College London

+44 (0) 20 76793432
s.hailes@cs.ucl.ac.uk

Raffaele Giaffreda

BT Exact

+44 (0) 1473 644171

raffaele.giaffreda@bt.com

ABSTRACT
This paper describes a conceptual model for reasoning
about context. The concepts introduced here may be
applied in designing context-aware services and modelling
context-sensitive interactions between context-aware
systems. We introduce the concept of “primitive context”
as the basic context abstraction. The concept of “primitive
context” effectively captures the notion of “context” and
provides a basis for formalising and reasoning about
context in a consistent and conceptually simple way. A
primitive context reflects an adaptation capability of a
system. Each primitive context is associated with an
ontology that describes the capabilities, relations and
information valid for that particular context.

Keywords
Context, Context-awareness, Context modelling

INTRODUCTION
Today’s networks are characterised by their highly
dynamic nature most evidently exhibited through device
mobility. Apart from mobility, many network parameters
and resources such as QoS and bandwidth as well as other
information sources vary through space and time. In order
to cope with such variability, services provided on these
networks should be able to adapt to changes in their
operating environment. Context-aware computing aims to
deliver this functionality. Context-aware services are
services that exploit knowledge from diverse sources and
adapt their operation to this knowledge.

In this paper we describe a novel design model for context-
aware applications and services. The same concepts may
be applied in modelling context-sensitive interactions
between context-aware systems. We introduce the concept
of “primitive context” as the basic context abstraction. The
concept of “primitive context” effectively captures the
notion of “context” and provides a basis for formalising
and reasoning about context in a consistent and
conceptually simple way. Each primitive context is
associated with an ontology that describes the capabilities,
relations and information valid for that particular context.

Our aim is to reduce the complexity and inconsistency
associated with the design of context-aware services by
introducing a useful and straightforward way of reasoning
about context. The “primitive context” abstraction seems
to provide such a facility. The model, being conceptual, is
independent of any specific development environment and
we believe that it will be able to form the basis for a well-
structured development process that will effectively and
efficiently capture the requirements and deliver the
required functionality of a system. Additionally, this
concept facilitates the modelling of context-sensitive
interactions between different systems as it exposes, at any
time, only the aspects of the system that are relevant to the
interaction and hides any unnecessary complexity.

In order to achieve this, we will build on existing
technologies that can provide the functionality desired in a
context-aware system. These include ontology-based
knowledge representation, service-oriented architectures,
existing context-aware solutions and knowledge
acquisition technologies.

The rest of this paper is organised as follows: Section two
provides an overview of context-aware design and
methodologies, section three presents a scenario that is
used to il lustrate our concepts while section four
introduces the concept of “primitive context” and further
definitions and conventions used in our model and
describes the design and operation of systems based on our
model. Section five concludes the paper and states future
plans.

BACKGROUND
A major obstacle to widespread deployment of
sophisticated context-aware services has been the lack of
consistency in their design process. This has lead to the
development of services that only work within their
development environment and cannot interact with each
other. The problem arises partly due to the complexity and
the great diversity of context-sensitive services and the
lack of consistency and standardisation in their design and
operation. Furthermore issues relating to knowledge

acquisition, categorisation, processing, interpretation,
aggregation, storage and dissemination (what we may
collectively refer to as “knowledge management”) are yet
not very well understood. Although significant progress
has been achieved in all of these fields, there still exists no
consistent formal or informal approach for designing
context-aware services and context-sensitive interactions
are still treated in a proprietary way that suits the needs of
the service/application developers.

The Context Toolkit [1] provides a useful environment for
the development of context-aware applications by using
widgets that encapsulate sensors and may be organised in a
hierarchical architecture thereby inherently supporting
basic features of context-aware applications such as
information aggregation. It also hides the operation of
sensors by providing an interface to which an application
can subscribe. However, it does not go as far as to provide
a formal treatment of context as we aim to achieve with
our solution. It is nevertheless suitable for building a
service-oriented architecture through its subscription
model and will most likely provide the underlying
platform on which our model will be implemented.

Egospaces [2] builds on a context abstraction defined as a
“view” . The “view” of an agent includes any
environmental or operational data that may be of interest
to the agent at any given time. An agent may have
different views defined and may switch between views
according to its operational requirements. A view is
essentially a restriction placed upon the entire environment
in which the agent resides. It is therefore similar to our
approach in the sense that it aims to provide context
abstractions that facilitate system design by imposing
restrictions upon the environment.

Ontologies have increasingly appeared in context
management due to their powerful descriptive capabilities
and their re-usability [4] that make them ideal candidates
for describing and communicating system properties and
relations, i.e. knowledge. Several ontology description
languages exist, the most advanced of them being the Web
Ontology Language (OWL) [3] developed by the W3C. We
aim to use ontologies as specifications for our primitive
contexts.

A SCENARIO
In order to clearly illustrate the ideas presented here, we
make use of a typical example scenario of the ubiquitous
computing vision that could benefit from these ideas.

A visitor is being driven around a city centre while using
his PDA to execute money transactions through his bank’s
online e-banking application. At the same time he is
listening to a streaming newscast through his PDA.
Network connectivity for his PDA is provided by a dense
mesh of overlay networks including bluetooth, WLAN and
3G.

In terms of ubiquitous computing, there are three main
considerations in this scenario: providing connectivity for
the PDA, providing security for the e-banking application
and providing enough bandwidth for the streaming audio
application. If mobility, security or bandwidth parameters
change, then action should be taken in order to adapt to
the new environment. These actions should be
automatically triggered and the new environment should
automatically become known to parties interacting within
this environment.

THE MODEL
In this section we first introduce some key concepts of our
model along with their definitions and examples of their
application to the scenario presented above.

A primitive context is a context specification that
describes a discrete adaptation capability of a system
within the operating environment. For example, in the
scenario presented in section three, a primitive context is
that of being a “ mobi l e_user ” , “ f i xed_user ”
or “ secur e_user ” . Each primitive context is
described by an ontology instance. The ontology describes
the capabilities, relations and other information that are
valid within that primitive context.

A primitive context is said to be an active primitive
context when it describes the current situation that a
system is in, i.e. it is a primitive context that is valid at
some instance. A primitive context is activated when some
condition becomes true. In our scenario, when the user is
roaming while using the e-banking application and
listening to streaming audio, the active contexts are:
“ mobi l e_user ” , “ hi gh_secur i t y” and
“ medi um_bandwi dt h” that reflect the basic
capabilities that are required and that the operating
environment should support.

The current context of an entity refers to some function of
all active primitive contexts. The current context describes
the state of a system at any time. However, conflicts may
arise between two or more primitive contexts when they
become active. For example the “ mobi l e_user ” and
“ hi gh_bandwi dt h” primitive contexts may not
gracefully coexist in certain conditions. Therefore, the
function that generates the current context should be
designed in a way that eliminates conflicts and complies
with precedence rules that may be set either by the
application developer or the user in the form of
preferences.

Design
In order to build a context-aware system based on
primitive contexts we should firstly decide upon the
discrete adaptation capabilities or “degrees of freedom” of
the system, i.e. whether we wish the system to adapt to
changes in mobility, security, location, temperature etc.
For each adaptation capability we decide on the granularity

of the adaptation depending on the degree of flexibility we
desire. The primitive contexts reflect these discrete
adaptation capabilities.

In our scenario we may define three independent lines of
adaptation: mobility, security and bandwidth. In terms of
mobility, the granularity of the adaptation we require may
be “ hi ghl y_mobi l e” , “ mobi l e” and “ f i xed”
depending on the capabilities of the PDA. The e-banking
application requires a very secure environment and
therefore we could only define two primitive contexts for
security: “ hi gh_secur i t y” and
“ l ow_secur i t y” , while the streaming application may
be able to adjust to various bandwidths through proprietary
adaptation algorithms and therefore a number of primitive
contexts may be associated with bandwidth, e.g. very-high,
high, medium, low. The three distinct adaptation lines
along with their primitive contexts are shown in Table 1.

Mobility Security Bandwidth

High Mobility Strong
Encryption

High

Mobile No Encryption Medium

Fixed Low

 Offline

Table 1 Primitive contexts for example scenario

It is apparent that the more flexible the system is, the more
primitive contexts are required in order to provide this
flexibility but with a cost on complexity. The purpose of a
primitive context is, however, to encapsulate a mode or
state of the system that would otherwise be represented by
a large number of information. It may be easier to think of
it as an object-oriented approach to context-aware design
and programming, where states or situations are
represented, accessed and acted upon as if they were
objects.

Each primitive context is associated with some actions,
services, preferences and devices that must or can be used
within that context. These properties are fully described in
an ontology associated with each primitive context. In our
scenario, for example, the primitive context
“ hi gh_secur i t y” may be associated with strong
authentication services and may only be used in networks
that provide high security such as 3G as specified in the
ontology that describes the “ hi gh_secur i t y”
primitive context. Once this primitive context is activated,
the behaviour of the system is dictated by the ontology
instance that describes it. Therefore it will be restricted to
the capabilities that emerge from the ontology, such as
connectivity to only secure, 3G networks.

Primitive contexts that refer to a single adaptation
capability of the system (e.g. mobility) may be associated

with the same ontology specification. I.e. “ hi ghl y
mobi l e” , “ mobi l e” and “ f i xed” refer to the ability
of the system to adapt to different degrees of mobility and
therefore can be described by a single ontology
specification while the ontology instances may vary in
each case.

Context Activation
Each “primitive context” is associated with a number of
context-information items that are monitored through
sensors. A primitive context is activated when a set of
conditions on the monitored parameters are met. The term
“sensors” here refers to both hardware sensors that capture
environmental data as well as logical sensors that capture
digital information from logical sources such as databases.
A primitive context is triggered (activated) by events
captured through one or more sensors. In the scenario we
have been using, the primitive context
“ hi gh_secur i t y” will be triggered once the e-banking
application is started. This behaviour is automated by pre-
associating the e-banking application with
“ hi gh_secur i t y” primitive context. Once this
primitive context is activated, the PDA will try to connect
to a secure network and the user may be required to enter
additional authentication information. We emphasise that
all these actions are specified in the ontology, therefore the
ontology should be quite detailed. Additionally, since an
ontology imposes a set of restrictions on the operation of
the system many system capabilities may have to be
restricted. For example, if the PDA was connected to a
WLAN before the e-banking application was started and
the “ hi gh_bandwi dt h” primitive context was active,
the new context dictates that only 3G networks are
accepted therefore the WLAN connection may be dropped
and the “ hi gh_bandwi dt h” primitive context should
be de-activated. This may then cause a significant
degradation on the streaming session’s quality. It is in
events as this that the conflict resolution mechanism
mentioned above should take over in order to resolve
conflicts, precedence and preferences.

Interaction
When two systems interact, their interaction is determined
by the current context of each system. And since the
current context of a system is described by a dynamic or
transient ontology, the interaction between two different
systems is also determined through these ontologies. As in
context activation, interaction between systems should also
be subject to conflict resolution and/or a negotiation phase
in which details of the interaction (such as protocols,
services, resource allocation) are determined. To illustrate
this, consider the case in which the PDA in our scenario
has a variety of different networks on which to connect.
These networks are also associated with ontologies
reflecting their specification, services, protocols, state,
rules etc. Therefore the PDA will select which network to

connect on depending on its current context (e.g. secure)
and the availability of options. To do this it will query all
available networks on their security provisions (described
in an ontology) and if one can match the set requirements
it will be selected or a new round of querying will start if
there are many candidates. The point here is to match as
many requirements as possible for both systems. At the
same time, however, the network may deny connectivity to
any node that does not comply with its specification. E.g.
PDAs may not be allowed to connect to a private WLAN
because they may be considered insecure.

Conclusion and Future Work
We believe that the concept of “primitive context” , as
presented in this paper, provides a suitable and effective
context abstraction for reasoning about context-sensitive
systems. Based on this concept we presented a design
methodology that is based on standardised tools (e.g.
ontologies) and is therefore independent of any specific
development environment. These properties of our model
have the potential to significantly reduce the complexity
evident in the design of context-aware services and
applications and to improve the interoperability of
independently developed context-aware services.

We aim to implement a prototype of this model based the
Context Toolkit [1] as the underlying context acquisition

platform and define ontologies using OWL [3].
Additionally we aim to deliver a theoretical analysis of the
model in order to determine its benefits as a context-
modelling approach.

REFERENCES
1. A. Dey and G. Abowd, The Context Toolkit: Aiding

the Development of Context-Aware Applications,
Proceedings of the Workshop on Software Engineering
for Wearable and Pervasive Computing, Ireland, 2000

2. C. Julien and G.C. Roman, Egocentric context-aware
programming in ad hoc mobile environments,
Proceedings of the Tenth {ACM} {SIGSOFT}
Symposium on the Foundations of Software
Engineering, New York, 2002

3. S. Bechhofer, F. Van Harmelen, J. Hendler, I.
Horrocks, D. McGuinness, P. Patel-Schneider and L.A.
Stein, OWL Web Ontology Language Reference, W3C
Recommendation, http://www.w3.org/TR/owl-ref/,
2004

4. X.H. Wang, D.Q. Zhang, T. Gu and H.K. Pung,
Ontology Based Context Modeling and Reasoning
using OWL, PerCom Workshops 2004, 18:22.

