
Automating Context-aware Application Development

Ted McFadden and Karen Henricksen
CRC for Enterprise Distributed Systems

Technology (DSTC)
{mcfadden,kmh}@dstc.edu.au

Jadwiga Indulska
School of Information Technology and

Electrical Engineering,
The University of Queensland

jaga@itee.uq.edu.au ∗

ABSTRACT
To develop robust, evolvable, context-aware applications that
are flexible enough to reconfigure and adapt in response to
changes in context such as location, connectivity, resources,
security, and user preferences, a rich context model, infras-
tructure components, and programming paradigms are re-
quired. The development and deployment of context-aware
applications can be further assisted by tools to automate the
transformation of the context model into appropriate forms
for ready manipulation by developers and administrators.
This paper describes an extensible set of tools we are devel-
oping for use in conjunction with our existing context mod-
elling framework and infrastructure that provides substantial
assistance to the development and deployment of context-
aware applications.

Keywords
context modelling, context management

1. INTRODUCTION
Constructing context-aware applications is a challenging and
time consuming task as the applications need to be supported
by both context models and context management systems.
Modeling context information, especially for complex context-
aware applications, can be error prone. This is even fur-
ther exacerbated by the fact that context models for context-
aware applications may evolve and the consequent required
changes may also introduce errors. Context management
systems, on the other hand, are quite complex as they have
to allow addition, removal and update of context information
and need to support rich context query capabilities and noti-
fications about context changes. Context-aware applications
based on evolvable context models and on complex context
management systems would benefit from automation tools
which support consistency checking of models and also au-
tomate some software engineering tasks related to context
management and context dissemination.

In this paper we describe automation tools developed to as-
sist both our context management system and development
of context-aware applications. The tools support the follow-
ing tasks: (i) validation of the context model and automated
mapping of the model to the context management system,
(ii) automatic generation of context-model specific program-
ming libraries for context-aware applications, and (iii) auto-
∗The work reported in this paper has been funded in part by the
Co-operative Research Centre for Enterprise Distributed Systems
Technology (DSTC) through the Australian Federal Government’s
CRC Programme (Department of Education, Science and Train-
ing).

matic generation of an adapter to the messaging/notification
system used by context-aware applications and context man-
agement system.

The structure of the paper is as follows. In section 2 we
briefly introduce our approach to context modeling and show
an example context model defined for a context-aware com-
munication application. Section 3 presents a brief descrip-
tion of mapping of the context model to a context manage-
ment system. The remaining sections use the example intro-
duced in section 2 to illustrate the functionality of particu-
lar automation tools. Section 4 discusses a context schema
which can be derived/defined from our context model and
characterises three types of our automation tools. Section 5
describes automation of the mapping of the context model to
the context management system. Section 6 describes gener-
ation of supporting programming libraries whereas section 7
overviews the tool which generates an adapter to the messag-
ing/notification system. Section 8 concludes the paper and
discusses other possible automation which will further assist
developers of context-aware applications.

2. CONTEXT MODELLING APPROACH
This section briefly reviews our approach to context mod-
elling. Further information can be found in earlier papers [1,
2, 3].

We model context at two levels of detail, using fact and sit-
uation abstractions. Section 2.1 presents our fact-based con-
text modelling approach, the Context Modelling Language
(CML), while Section 2.2 describes how we represent ab-
stract situations in terms of fact types modelled with CML.
Section 3 briefly outlines a previously developed approach
to mapping from CML to the relational data model, and
describes how we exploited this mapping to implement a
generic context management system as extensions on top of
a relational database.

2.1 CML
CML primarily serves as a tool that enables application de-
velopers to explore and formally specify the context require-
ments of a context-aware application. It provides constructs
for defining the entities about which context information is
required and the types of information (or facts) that are of
interest in relation to each entity. It also allows developers
to identify an appropriate source for each fact type (sensors,
user profiles or derivation from other context information),
specify dependencies and constraints, and explore informa-
tion quality issues as described in [2].

Our modelling approach builds on Object Role Modeling
(ORM) [4], which provides a graphical notation designed
primarily for conceptual modelling of information systems.
ORM represents object types as ellipses and relations on one
or more object types as fact types, drawn as sequences of
role boxes (where each role is attached to the object type
that participates in the role). Each object type is assigned
a name as well as a reference mode, shown in parentheses,
that describes how instances of the type are represented. Fact
types are annotated with uniqueness constraints, represented
as double-headed arrows spanning one or more role boxes;
these place restrictions on the populations of the fact types in
the manner of key constraints on attributes of relations in the
relational data model. A variety of other constraints are also
supported, but a discussion of these falls outside the scope
of this paper.

CML introduces a variety of extensions to this basic no-
tation, illustrated in an example model shown in Figure 1.
The example builds on a context model that we defined for
a communication application that assists users with the se-
lection of appropriate communication channels for their in-
teractions with other people. For this application, the most
relevant types of context information include associations of
users to communication channels and devices (e.g., owner-
ship, permissions and proximity in the case of devices), cur-
rent locations of users, and current and planned activities.

The CML extensions allow fact type classifications to be la-
belled as:

• static (s), sensed (∧∧), derived (*) or profiled (◦) types,
depending on persistence and source;

• temporal ([]) types that capture histories of context infor-
mation (e.g., user activity over a period of a day or week);
and

• alternative (a) types that are capable of describing am-
biguous information (e.g., conflicting location reports gath-
ered from a variety of location sensors).

CML also provides extensions to support special constraints
on temporal and alternative fact types, annotation of fact
types with appropriate metadata types, and dependencies be-
tween pairs of fact types (e.g., between a person’s activity
and their current location, to indicate that location changes
are typically linked to activity changes).

2.2 Situation-based context modelling
In addition to modelling context at the fact level using CML,
we provide a situation abstraction for describing context in
high-level terms. Situations are defined using a variant of
predicate logic to capture abstract classes of context in terms
of the fact types of a CML model. Situations can be eas-
ily combined using logical connectives to form increasingly
rich context descriptions. This feature makes them useful
as programming abstractions that allow the software engi-
neer to predicate application behaviour on simple situation
expressions in a very natural way.

Situations are written as predicates on zero or more vari-
ables, then evaluated against a set of variable bindings and
a context (represented as a repository of facts) to yield one

of the values true, false or possibly true. The possibly true
value arises when the available context information is inad-
equate to determine absolute truth or falsity (e.g., because
of incompleteness or ambiguity). Some example situations
are shown in Table 1. We presented the definitions of most
of these situations and a general discussion of the situation
logic in a previous paper [1], and do not repeat them here.

3. MAPPING TO A CONTEXT MANAGEMENT SYSTEM
VIA THE RELATIONAL DATA MODEL

We have implemented a context management system based
on our context modelling approach, which leverages a straight-
forward translation of CML to the relational data model.
This translation builds on ORM’s relational mapping pro-
cedure, Rmap [4], incorporating additional mappings for the
context modelling constructs introduced by CML, to appro-
priate constraints and metadata, as described briefly in [5].

The context management system is responsible for storing
the context models and their instantiations, parsing and eval-
uating situation expressions, processing queries and subscrip-
tions, to receive context change notifications, formulated in
terms of either facts or situations, providing transaction sup-
port for queries, and managing updates from a variety of
sources in accordance with integrity constraints expressed
in the CML models. The implementation is currently built
on top of a relational database.

4. USING A CONTEXT SCHEMA TO AUTOMATE DEVEL-
OPMENT

The Context Modelling Language (CML) described in Sec-
tion 2.1 provides a powerful technique to capture application
context information requirements in a comprehensive man-
ner, providing a visual representation and a semi-automated
procedure to map context models to context management
systems based on relational databases. However, our initial
experiences in developing CML-based context-aware appli-
cations suggested that the database and application coding
and administration effort could be further reduced and made
more error resistant by introducing additional tools to auto-
mate aspects of deploying, administering, and programming
with context.

More specifically, tools are needed to address issues such
as mapping context models to specific context management
systems (based on SQL or other non-relational data stores),
managing database and programming language namespaces,
and providing programming language libraries and develop-
ment tool (e.g., eclipse IDE [6]) support for manipulation of
context information.

To begin addressing these issues, we developed a text-based
context schema that captures CML models and the higher
level situation definitions. This allows a full context model
to be validated and processed by a context schema compiler.
Additional tools that front-end the compiler can then trans-
form the context models into forms useful for application de-
velopment. The context schema syntax is similar to an SQL
database schema [7], providing an easy transcription from
CML models, and a familiar syntax to many developers. We
initially identified the following automation tool outputs that

person located at

controls

has type

owned by
device
located at

controlled by

engaged in

has channel

synchronous

Certainty Probability
(nr)+

Organisation
(identity)

permitted to use

requires device

owns

Communication
Channel (id)

Device
(id)*

(name)
Place

s

s

Mode (name)
Communication s

a

a

[]

has mode

located near

using

Device Type
(name)

iff p1 = p2
engaged in(p1,a) dependsOn person located at(p2,l)

 and l1=l2

Activity
(name)

Person
(identity)

 and device located at (d, l2)
* located near(p,d) iff person located at(p, l1)

Figure 1: Modelling context for a communication application using CML.

would have directly reduced the coding effort involved in our
prototype applications:

• SQL scripts to load and remove context model definitions
from the context management system database.

• Context-model specific Java (and other programming lan-
guage) classes to allow context type safety checking at
compile time, to feed existing development tool features
such as method selection code completion, and to elim-
inate manual coding of repetitious, boiler-plate, context
manipulation code.

• Support for sending context information as notifications
over a content-based publish-subscribe notification router
(such as Elvin [8]) for use with the context management
system and any other loosely coupled context producers
and consumers in the system.

Figure 2 shows selected portions of the context schema for
the context model shown in Section 2. The CREATE SCHEMA

statement defines the context schema namespace, which al-
lows for deploying multiple context models in a single con-
text management domain. Context schemas may reference
elements from other schemas by fully scoping the reference.
The schema naming scope also partially defines the output
scope of other programming artifacts such as Java package
names. The DOMAIN statements that follow define the type
names used in the context model. The domain statements
that map to base SQL data types are not shown due to space

limitations. Next are the FACT statements which capture fact
names, their classifications (static, profiled, derived, sensed,
alternative, temporal) , dependencies, and details of context
fact information, such as the alternative role (ALTROLE) in-
dicator for the location attribute of the CurrentLocation

fact type. Finally, the context schema supports the defini-
tion of situations through the SITUATION statement. The first
portion of the statement is similar to an SQL CREATE TABLE

statement. The remainder of the situation definition syntax
is defined in [1].

The context schema syntax described is sufficient to fully
capture our context model definitions. Figure 3 illustrates
the tool architecture used to process context schema defini-
tions. The first tool we developed was the context schema
compiler to validate and process context models into a com-
mon intermediary form. From this, task specific front end
tools generate specific outputs. The tools developed to ad-
dress our initial requirements are also shown in the figure.
They are described in more detail in the following sections.

5. MAPPING TO CONTEXT MANAGEMENT SYSTEMS
In our initial work, to map context models into correspond-
ing database relations as required by our SQL based context
management system, we relied on simple (manually pro-
duced) Java programs. These programs generated and ex-
ecuted appropriate SQL statements via the JDBC API.

Although fully functional, these programs required careful

Table 1: Example situations for the context-aware communication application.
Situation Description
Occupied(person) True whenever person is currently involved in an activity such as a meeting or phone call, as determined by the

EngagedIn fact type from our example model.

CanUseChannel(person, channel) True whenever person has appropriate access to, and permissions to use, the devices associated with channel, as
determined by the RequiresDevice, LocatedNear and PermittedToUse fact types.

Engaged(device) True whenever device is a telephone, according to the HasType fact type, and is currently being used by at least
one person, according to the Using fact type.

WorkingHours() Indicates whether the current time falls within normal working hours.

CREATE CONTEXT SCHEMA DSTC.PACE.COMM
...
CREATE DOMAIN PersonID AS Identity...
CREATE DOMAIN ChannelID AS Identity...

CREATE PROFILED FACT TYPE PersonHasChannel(
KEY(
person PersonID,
channel ChannelID
)

)
...
CREATE ALT SENSED FACT TYPE
PersonLocatedAtPlace
QUALITY(Certainty) (
person PersonID KEY,
place PlaceName ALTROLE

)
...
CREATE FACT TYPE PersonLocatedNearDevice
DERIVED(person PersonID KEY,

device DeviceID KEY)
IFF PersonLocatedAt(person, location1)

AND DeviceLocatedAt(device, location2)
AND location1 = location2

...
CREATE PROFILED TEMPORAL FACT TYPE
PersonEngagedInActivity
DEPENDS(PersonLocatedAt) (

person PersonID KEY,
activity ActivityName

)
...
CREATE SITUATION Occupied(person PersonID):
exists activity .
PersonEngagedInActivity[person,activity] .

activity = ‘‘meeting’’ or
activity = ‘‘on.phone’’

Figure 2: Selected Portions of Context Schema for Ex-
ample Context Model.

coding, and had to be manually updated when a context
model changed, which is not uncommon during research and
development. Certain errors in naming fact type tables or
other fact specifications could go undetected until client ap-
plications encountered errors manipulating context informa-
tion. For these reasons, we developed an SQL database tool
to automate the mapping of the context model to our existing
context manager’s underlying SQL database.

The abbreviated database tool output for the communication
context model is shown in Figure 4. As shown first in the
CREATE SCHEMA statement, the multi-level namespace of the
original context schema has been collapsed to reflect the ca-

Context
Schema

Context
Schema
Compiler

Intermediary
Form

SQL Database
Mapping Tool

Java Binding
Library Tool

SQL Database
Schema

Elvin Notification
Library Tool

Fact BindingClasses

Elvin Classes

Domain Classes

Future
Tools

Tool Outputs

Common Tool Back End

Task Specific
Tool Front Ends

Figure 3: Tool Architecture.

pabilities of the target database. Context domains and fact
types are mapped to SQL domains and tables respectively.
The object types involved in fact type roles map to table
columns. Fact type quality annotations are mapped as ad-
ditional table columns. Temporal fact types are mapped to
tables wtih two additional columns to represent start and end
times. Key constraints for database tables representing al-
ternative and temporal fact types are set to support the fact
type semantics in the relational domain. Derived fact types
are defined as SQL views with the appropriate view SELECT

statement. Context schema situation definitions are loaded
into tables that are part of the context management system
itself, as are fact metadata (not shown.)

The SQL database tool has brought direct benefit by remov-
ing manual administrative database coding, allowing rapid
deployment of context models to the context management
system, and ensuring context model updates are correctly
applied.

We expect to be able to apply similar context management
mapping tools as we explore alternatives to SQL based con-
text managers for pervasive environments and distributed con-
text management.

6. CONTEXT MODEL SPECIFIC PROGRAMMING LIBRARIES
The functionality of our current, Java-based, context man-
agement system is described in Section 3. The context man-
agement API provided allows applications full access (with
appropriate authorisation) to context information, but as it
is a generic context management interface, context model
specific operations or compile time validation of request pa-
rameters are not available. As we found in practice, lack of
these features can sometimes lead to application coding er-

CREATE SCHEMA DSTC_PACE_COMM;

CREATE DOMAIN DSTC_PACE_COMM.PersonID
AS VARCHAR(255)...

CREATE TABLE DSTC_PACE_COMM.PersonHasChannel(
person DSTC_PACE_COMM.PersonID,
channel DSTC_PACE_COMM.ChannelID,
PRIMARY KEY (person, channel)

);
CREATE TABLE
DSTC_PACE_COMM.PersonLocatedAtPlace(

person DSTC_PACE_COMM.PersonID,
place DSTC_PACE_COMM.PlaceName,
qCertainty DSTC_PACE_COMM.Certainty,
PRIMARY KEY (person, place)

);
CREATE VIEW
DSTC_PACE_COMM.PersonLocatedNearDevice (

person, device)
AS SELECT DISTINCT person , device FROM

CREATE TABLE
DSTC_PACE_COMM.PersonEngagedInActivity(

person DSTC_PACE_COMM.PersonID,
activity DSTC_PACE_COMM.ActivityName,
fStartTime TIMESTAMP,
fEndTime TIMESTAMP,
PRIMARY KEY (person, fStartTime)

);

Figure 4: Context Schema to Relational Database Map-
ping Example.

rors that result in subtle alterations in system behavior that
may not be readily identifiable without further, detailed re-
view. After experiencing this in the first prototype systems,
it became desirable to write context model specific code li-
braries to provide programming convenience and compile-
time checking. This brought additional benefits to develop-
ers using Java IDEs, which could now offer context model
specific assistive information.

The code in the first manually constructed context model
specific library provided a context manipulation class for
each fact type and situation as well as a class to represent
each of the context model domain types (e.g., PersonName,
CommunicationMode). These classes were conceptually sim-
ple, numerous, and tedious to write, making them prime can-
didates for automatic generation. (The communications con-
text model presented in Section 2.1 requires over 30 such
classes.)

A context model library tool was written to generate the nec-
essary Java helper classes. As a result of using this tool,
helper classes are now of a consistent form, offer complete
coverage of specific context models, and can be refreshed
immediately to reflect additions to context models or changes
to the desired class implementations.

7. CONTEXT NOTIFICATIONS
The context-aware infrastructure components and applica-
tions make use of the previously mentioned content-based
notification routing system, Elvin, which offers loosely cou-
pled, publish-subscribe communication semantics. This style

of communication is attractive in pervasive environments as
it minimises dependencies on well known endpoints and al-
lows more flexible modes of communication besides the one-
to-one of RPC mechanisms such as Java RMI.

To use Elvin with the initial prototype applications, interface
classes were written to send and receive context fact events
over Elvin. Additionally, as the existing context manager
API is not exposed via Elvin messaging, Elvin adapter ap-
plications were written to receive Elvin context events and
relay them to the context manager through its Java RMI in-
terface.

As in the case of the context model specific programming
libraries, the Elvin interface classes and gateway code were
boiler-plate in nature, and an Elvin notification library tool
was written to generate them automatically.
This tool is shown in more detail in Figure 5. The tool is
fed with the output of the context schema compiler and as
a first step generates a java interface that defines methods
for all of the context fact events represented by the context
schema. For example, a method signature in this interface
for the described communications context model is:
void personUsingDevice(PersonID aPerson,

DeviceID aDevice);

The generated interface method parameter types (e.g., Per-
sonID) reference the domain classes that were generated by
the Java context model library tool (shown as an input in Fig-
ure 5.) The void return type is indicative that this method
represents an event notification and not an RPC call.

The generated context fact interface is then processed by an
additional tool we have developed, the Elvin interface com-
piler. This tool takes a Java interface and generates send and
receive stubs that map interface methods to Elvin notifica-
tions. This eliminates the need for applications to manually
construct and unpack Elvin notification messages. Java and
Python are the currently supported target languages. After
this step, Elvin stubs are available for the context fact inter-
face.

Finally the Elvin notification library tool uses the just cre-
ated Elvin receiver stub to generate a context model specific
Elvin adapter for the context management system. This class
provides a gateway to relay Elvin context fact messages to
the context manager. It uses the fact binding and domain
classes generated by the Java context model library tool. It
may be run as part of the context manager process or as a
stand alone gateway.

This tool allows any context model to be instantly accessible
to Elvin clients written in a variety of languages running on a
number of operating system platforms. We expect to develop
further Elvin generation tools as we extend the capabilities
of the context management system.

The Elvin generation tool model is extensible to a number of
other distributed communication infrastructures, RPC or no-
tification based, such as CORBA or web services (WSDL).
This will give us further opportunities to extend the context
mangement system operating domain.

8. CONCLUSIONS

Elvin
 Notification
Library Tool Elvin Sender Stubs

Elvin Context Fact
Java Interface

Definition

Elvin Receiver Stubs

Context Manager
Model Specific
Elvin Adapter

Elvin Interface
Compiler

Tool

Java Context Model
Library Tool

Generated Classes

Figure 5: Elvin Notification Library Tool Detail.

As our early experiences have shown, context-aware appli-
cation development requires significant and careful coding
efforts to ensure that context models are faithfully repre-
sented in the target context management system and that
applications perform valid manipulations of context infor-
mation. Any changes to a context model requires detailed
re-examination of context-related code.

To address the limitations of manually constructing context
manipulation code, we adopted a model driven development
approach. A CML-based context model is expressed as a
text-based context schema. The context schema is validated
and processed into an intermediary representation by a con-
text schema compiler. From this form, specialised front-end
tools generate specialized outputs. In this paper we have de-
scribed tools to generate SQL database scripts for our con-
text management system, context model specific program-
ming libraries, and adapters to the Elvin notification router.
Each of the tools has contributed to reducing the effort re-
quired to develop and maintain context-aware applications.

The paper also discussed extending the tools to add new fea-
tures to context libraries, adapters to other communication
transports, and support for alternative context management
systems. We are currently investigating extending the fea-
tures of the context model specific library tool, and exploring
ontology-based approaches to context modelling by creating
tools to represent CML-based models in ontology languages
such as OWL DL [9] and SWRL [10].

REFERENCES
[1] Henricksen, K., Indulska, J.: A software engineering

framework for context-aware pervasive computing. In:
2nd IEEE Conference on Pervasive Computing and
Communications (PerCom), Orlando (2004)

[2] Henricksen, K., Indulska, J.: Modelling and using
imperfect context information. In: Workshop on
Context Modeling and Reasoning (CoMoRea), 2nd
IEEE Conference on Pervasive Computing and
Communications (PerCom), Orlando (2004) 33–37

[3] Henricksen, K., Indulska, J., Rakotonirainy, A.:
Modeling context information in pervasive computing

systems. In: 1st International Conference on Pervasive
Computing (Pervasive). Volume 2414 of Lecture
Notes in Computer Science., Springer (2002) 167–180

[4] Halpin, T.A.: Conceptual Schema and Relational
Database Design. 2nd edn. Prentice Hall Australia,
Sydney (1995)

[5] Henricksen, K., Indulska, J., Rakotonirainy, A.:
Generating context management infrastructure from
context models. In: 4th International Conference on
Mobile Data Management (MDM) - Industrial Track,
Melbourne (2003)

[6] Foundation, E.: Eclipse: Open extensible integrated
development environment (2004)
http://www.eclipse.org.

[7] ANSI/ISO/IEC: Structured Query Language (SQL)
Standards. (2003) ISO/IEC Standards 9075-1 –
9075-5.

[8] Segal, B., Arnold, D., Boot, J., Henderson, M., Phelps,
T.: Content based routing with elvin4. In: Proceedings
of the AUUG2K Conference. (2000)

[9] McGuinness, D.L., van Harmelen, F.: OWL Web
Ontology Language - Overview. W3C
Recommendation (2004)

[10] Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet,
S., Grosof, B., Dean, M.: SWRL: A semantic web rule
language combining OWL and RuleML, Version 0.5
(2003) http://www.daml.org/2003/11/swrl.

