
Calculating Walking Distance in a Hybrid Space Model

Wen-Tai Hsieh*, Nancy Miller+, Yung-Fang Yang*,
Shih-Chung Chou* and Peter Steenkiste+

* Advanced e-Commerce Institute
Institute for Information Industry

Taipei, Taiwan, ROC

+ Department of CS and ECE,
Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.

Abstract- The CMU Aura system introduced a hybrid
location model for space representation in ubiquitous
computing environments. The hybrid location model
combines hierarchical symbolic names with coordinates,
with the goal of gaining the benefits of both: symbolic
names offer an intuitive representation and captures
spatial relationships while coordinates provide high
precision. While the hybrid location model has served
us well, we have so far made little use of the coordinates.
In this paper we report on our ongoing work of
implementing an Aura service that estimates walking
distance. The availability of both symbolic names and
coordinates turns out to be very advantageous for this
service since it provides us both accurate distance
estimates and spatial relationships that can be used to
incorporate user preferences.

I. Introduction

Many research groups are exploring are exploring
context-aware computing. Xerox's Palo Alto
Research Center (PARC)[1], for example, has been
working on pervasive computing applications since
the 1980s. In the context of Project Aura[2][3][6],
Carnegie Mellon University is developing
technologies that will reduce user distractions by
having applications and systems automatically adapt
to the user’s context, including physical and
computational context and user preferences.

Location information is a critical piece of context
information for context-aware applications used by
mobile users. Using the user’s location enables
services such as diverting phone calls to the receiver
nearest to a user, perfecting data to the service portal
near the user’s path, locating interesting
objects/people, navigation, etc. In order to support
such applications, Aura developed the hybrid location
model [3], which combines symbolic names with
coordinates. The motivation for this design was that
it combined the benefits of hierarchical symbolic
names (accurately captures spatial relationships,
intuitive for users) and coordinates (high degree of
precision). In this paper, we report on our work in
implementing a “walking time” service. It estimates
the walking time between two points in space and it
leverages the benefits of the hybrid space service.

The remainder of this paper is organized as follows.

We first introduce a motivating application: a
context-aware museum tour guide. We then
describe the Aura hybrid space service and describe

how it is used by the walking time service. Finally,
we describe the status of our implementation.

II. Context Aware Tour Guide

The Context Aware Tour Guide [4] at Institute for

Information Industry is a ubiquitous computing
project that focuses on giving museum visitors
personalized guidance that is context sensitive. The
goal is to optimize the visitors’ experienced while
they are visiting complex and unfamiliar environment.
The target museum is the National Museum of
Natural Science [5], which is one of the largest
Museums in Taiwan. It has more than 3 million
visitors per year and as an educational organization,
they want to provide visitors with a maximum
amount of useful information by providing
interesting tours. We can image that with customized
information and guidance, tours could be more
attractive and the tourists would definitely gain more
knowledge from the same exhibitions.

Traditionally, visitors of museums or art galleries

are guided by guides who show them one of a set of
scheduled tours. These tours typically include both
exhibits that are of interest and exhibits that are not of
interest. Visitors never know on which tour is most
suitable for them. More, tours may not always be
available because there are always more visitors than
there are guides available. As a result, we started to
build a Tour Guide for the National Museum of
Natural Science, using context-aware technology.

Figure I shows the architecture of the

context-aware tour guide. When visitors arrive at
the museum, they will receive a handheld device.
Before starting their tour, the visitors will enter some
preferences (e.g. what type of exhibits they like) and
personal information (e.g. planned duration of stay,
walking speed, ..). Based on this information, the
Recommendation service will either recommend a
pre-defined tour that best meets the visitor’s interest
and schedule or the Recommendation service could
create a custom tour. The tour will be displayed on a
map of hand-held device and will provide the visitor
step by step guidance, including in-depth information
on the exhibit included in the tour. Throughout the
tour, the visitor can provide input to the system about
the exhibits. The Recommendation Service can then
recommend changes to the tour, e.g. to adjust to

user’s changes in preferences or to avoid rooms that
have become crowded. We believe that such a
context-aware tour guide will enhance the visitor’s
experience and learning.

Figure I

Museum Tour Guide Architecture

• Exhibit Ontology

• Visitor Ontology
• Space Ontology

• Tour Ontology

Inference
Engine

Recommendation ServiceApplication
Service

Context Service

Knowledge Service

Sensor Service

Teammate Service

RFID Motion Detector

Space Context

People Location Context

Voting Context

Crowds Context

Database

Privacy ControlPrivacy Service

An essential requirement for the tour guide is the
ability to estimate how long it will take the visitor to
walk between exhibits. Walking time estimates must
be personalized: not only does it depend on a
person’s walking speed but it should also consider
preferences such as taking stairs versus an elevator.

III. Hybrid Space Model

One important issue for context-aware applications

is that they must model the physical environment
through an appropriate location model. The
prevailing location models fall into two groups:
hierarchical names and coordinates [9]. Hierarchical
names organize the space as a hierarchy of spaces,
similar to for example hierarchical directory names or
DNS. They are very intuitive and express spatial
relationships but they are not very precise. In
contrast, coordinates based on geometric models are
simpler and precise, but they are less intuitive.
Table I summarizes the differences between the two
models.

TABLE I

Comparisons OF Symbolic and Geometric Space Model

 Space Model

Feature

Symbolic Geometric

representation of spatial

relationships

Good Poor

human readability Good Poor

Specifying locations

precisely

Poor Good

Computing distance

accurately

Poor Good

In order to try to gain the benefits of both models,
the Aura project built a Hybrid Space Model [3]. In
the hybrid location model, a location is represented
by an Aura Location Identifier (ALI), which consists
of a hierarchical name, followed by a set of
coordinates that identify the location inside the space
identified by the hierarchical name. Both name and
the coordinates are optional, i.e. coarse spaces can be
represented by a hierarchical name only, while in
some applications, only coordinates are needed (e.g.
GPS).

Example I

Map of Science Movie Theater in NMNS

Science Movie Theater
A B

C

ALIs can be used to specify three types of location
model (Example I).
• Space ALI represents a physical space in the

hierarchy, e.g. the Science Movie Theater on the
first floor of NMNS (see A in Figure II):

ali://NMNS/SMTheater/floor1/SpaceTheater
• Point ALI represents the exact position of an

object, e.g. the location of the entrance of
Science Movie Theater of NMNS (see C in
Figure II):

ali://NMNS/SMTheater/floor1/SpaceTheater#(
10,4,1)

The coordinates are relative to the Space
Theater’s space coordinate system

• Area ALI represents a space defined by the
application, e.g. the ticket office space of
Science Movie Theater of NMNS (see B in
Figure II):

ali://NMNS/SMTTheater/floor1/#{(1,0),(-1.5,0.
5),(0,3),(2,3.5),(3,1.5)-(1,5)}

The first group of coordinates specify the four
corners of the area while (1,5) specifies the
height range of the area.

Five primitive operations are defined on ALIs:

• Distance(Ali,Ali) returns the physical distance
between two ALIs.

• Contains(Ali,Ali) returns whether one location
contains another.

• Within(Ali,Ali) returns whether one location is
within another.

• Super(ali) returns the direct super space
containing the location.

• Sub(ali) returns the list of all subspaces
contained in the specified space.

The Hybrid Location model forms the basis for the

Aura space service, which is part of the Contextual
Information Service (CIS)[7]. The CIS collects
information about the user’s physical and computing
context and makes it available to context-aware
applications through an SQL-like API. The CIS
isolates the context-aware applications from the
details of how information is collected. This allows
the CIS to use multiple sources of information,
transparently to the user. This is for example
important for location information, which can be
derived from a variety of sources (e.g. RF/ID badges,
calendar, wireless networks, ..). The CIS was
originally designed to support the office environment
[6,8], but is being ported to the represent the museum
contextual information.

In order to support the Museum Tour guide, we are

also implementing a Walking Time service that
estimates how long it will take a visitor to walk
between two points. Note that the “distance” function
defined in the original space service represents
geometric distance, i.e. it does not consider walls etc,
so it is not a good indicator of walking time. The
walking time service is interesting because it relies
heavily on both the hierarchical name and coordinate
features of the Aura space service.

IV. Walking Time Estimation

We discuss the design of the walking time service
in two steps. We first discuss walking between two
points on the same floor and then we look at walking
between floors or buildings. First, we introduce the
concept of a path.

Walking Path

The original space service operates in terms of

areas and points in areas. To estimate walking times,
we also need to introduce the concept of a “path”.
For instance, we want to find a nearest restroom for
visitor Kelly (Figure I). A “nearest bathroom” service
based on the distance function in the ALI Space
Model will return T2 (Path A) since it is the closest
bathroom in space. Unfortunately, Path A between
Kelly’s location and T2’s location passes through a
wall. The nearest bathroom service instead should
return T2, which can be reached using Path B.

This simple example shows that estimating walking

time requires us to first calculate feasible (walking)
paths between two points. A path simply consists of
a sequence of points, such that it is possible to walk

between consecutive points. In our model, two
consecutive points can be connected by a straight line,
called a segment, so, given the coordinates of the two
points, it is easy to calculate the distance between the
two points (or the length of the segment). The
length of the path is simply the sum of the lengths of
the segments in the path.

Figure I

Visitor Routing Map

Room
103

Room
002

Room
003

Room
202

Room
102

Toilet
T1

Room
001

Toilet
T2

Room
201

Room
101

Room
200

Room
100

Room
103

Room
002

Room
003

Room
202

Room
102

Toilet
T1

Room
001

Toilet
T2

Room
201

Room
101

Room
200

Room
100

PassagePassage DoorDoorRoomRoom

Path APath A Path BPath B Path CPath C
Paths to
Restroom

Walking Time on a Floor

On a single floor, we expect that for most people,

walking time will be roughly proportional to distance,
i.e. we can estimate walking time by multiplying
distance with a user-specific walking speed. An
important point is that “distance” is an objective
metric, so we can use the same algorithm for all
visitors. There are some exceptions to this rule.
For example, visitors with strollers or wheelchairs
may not be able to use all doorways. As we will see
below, it is pretty easy to incorporate these
constraints in our model by simply removing certain
“connections” from the model for those visitors.

The next question is how we can identify feasible

paths between two points and calculate their distance.
The original space service provides information
about spaces, including their physical size.
However, it does not provide information about
connectivity between spaces, i.e. it does not specify
what rooms were connected or where the doors might
be located. The first step is extend the space service
to provide this information. Figure II, for example,
shows the connectivity information for the space
shown in Figure I: each dot represents a connection.
Connections can be doors, e.g. connecting rooms to a
corridor, or open entrances (i.e. “doors” that cannot
be closed), or simply locations where two spaces
flow into each other, e.g. the locations marked P1 and
P2 show where the corridors in Figure I connect.

Figure II
Connection Information and Transfer Cost

P1

P2

R200 R201 R202 T1

R100 R101 R102 R103

T1 001 002 003

4m
5m

4m4m4m
2m

8m

2m

2m

1m

3m

Specifically, we need to add the following

information to the space service:
1. Connectivity information : for each node in the

space hierarchy (i.e. space), we add connectivity
information, i.e. what other spaces is it
connected to.

2. Information about the nature of the connection,
e.g. its location (as a set of coordinates),
possible constraints (e.g. one way only, no
strollers, ..).

The space service is implemented using a database

[3]. To add the connectivity information, we
simply add a table. The primary columns in the
new table are a “from” space and a “to” space, both
in the form of an ALI, and a “coordinate” column.
An entry simply means that it is possible to walk
from the “from” space to the “to” space using some
form of entrance located at the specified coordinates;
the coordinates are specified relative to the
coordinate system of the floor. Additional columns
can specify constraints, e.g. fire exit only.

Given this connectivity information, we can now

easily formulate the problem of finding feasible
paths and of calculating walking distances as a graph
problem in the following way:
• The nodes in the graph correspond to the

connectivity points in the connectivity table.
• We add two nodes to the graph corresponding to

the visitor’s current location and target
destination, both represented as a set of
coordinates.

• Edges in the graph correspond to the spaces
connecting the points. Figure II shows for
example all the edges connecting the
connectivity points. The weights of the edges
correspond to the length of the segments they
represent, i.e. the distance between the two
points; this can be easily calculated based on the
coordinates associated with each point.

After modeling the connectivity on a floor as a

directed graph, we can find feasible paths as any
sequence of edges. We can find the path
representing the shortest walking distance by simply
applying a shortest path routing algorithm to the
graph. If some inter-space connections are not
usable for some visitors, those nodes can simply be
removed from their graphs.

Our results distance calculation algorithm is as

follow:
1. UserLocation = GetUserLocation(UserID)

2. StartPoint =

FindNearestConnectionPoint(UserLocation)

3. Dist_UL_to_StartPoint =

Distance(UserLocation,,StartPoint)

4. Path = Get the shortest path between StartPoint

and Destination

5. TotalDistance =

Path.Distance + Dist_UL_to_StartPoint

Walking between Floors

While walking time on a floor is typically

proportional to the distance between the two points,
determining the best way to walk between two flows
is more complex. The reason is that we have to
consider the visitors’ preferences with respect to
using stairs or elevators. Also, we have to be able
to consider the personal tradeoff between going to a
different floor versus walking further on the same
floor. Let us consider some example:
• Some people cannot use stairs and they always

need an elevator. Others (e.g. elderly) will
strongly prefer elevators, while others prefer
stairs because they dislike the wait associated
with an elevator. These tradeoffs may depend on
the number of floors that has to be crossed.

• Given a choice between a destination (e.g. a
restroom) on the same floor or on a different
floor, people will have different preferences.
Some people will be willing to walk an extra 50
meters to avoid using stairs/elevators, while for
others, the cutoff may be only 10 meters.

Note that these preferences could also be context
dependent. For example, they may depend on
how crowded the museum is (will impact the waiting
time at the elevator).

The hybrid space service provides two options for
implementing a multi-floor walking time service.
The first option is to extend the single floor solution:
we build graphs for individual floors and use
information about the location of stairs and elevators
to connect them. We then have to calculate

personalized weights for the edges representing
stairs and elevators reflecting the user’s preferences
and possibly context information and solve the
routing problem. This is conceptually fairly
straightforward, although the graph could become
quite large for large spaces and incorporating
personal preferences may become tricky.

An alternative is to apply a hierarchical solution

based on space hierarchy. We first solve per-floor
problems to find the shortest distance between both
the user’s location and the destination and the stairs
and elevators of interest. We then solve a small
“inter-floor” optimization problem. This could be
done by exhaustively evaluating the cost of all
possible paths between the two floors, since the
number of options will be small. This approach is
more complex, but it maybe easier to incorporate
personal preferences. We plan to implement both
algorithms and compare them both in terms of
performance and flexibility.

With both approaches, we need the user’s

preferences. The easiest format to use is “time”,
e.g. a per-floor elevator cost of 1 minute and stair
cost of 2 minutes would reflect a preference for
elevators and also a relative preference to walking a
certain distance. Note also that we can use the
same two approaches to estimate the time to walk
between two buildings.

In important point is that out path finding

approach uses both the coordinate and symbolic
aspects of the hybrid space model. We use the
symbolic information to specify what spaces are
(directly) connection while the coordinate system is
used to automatically calculate distances between
different connections for the same room. If either
aspect were missing, some information would have
to be imported from outside the model.

V. Implementation

We are in the process of implementing the “walking

distance” service. The format of the “connectivity”
table that is added to the space service is shown in
Table II. Additional columns will be added later to
reflect constraints and properties of the connection.

Table II

Relation Definition of Connection Point in Database
Field Type Notes

ConnectionPointID Integer Door

FromSpaceID Varchar ALI

ToSpaceID Varchar ALI

Coordinates Varchar ALI

To find the shortest path between two connection
points (Figure III), we implemented the Floyd
All-Pairs-Shortest-Path algorithm [10]. It uses a
dynamic-programming methodology to solve the
All-Pairs-Shortest-Path problem. The algorithm runs
in O(N3) time, so it is potentially expensive. If
necessary, the results for common queries (e.g. to
find restrooms) could be cached since the information
is static. The distance between the user’s location
and the nearest connection point is calculated on the
fly using the coordinate system.

Implementing the “walking time” service, once the

database has been set up, is clearly straighforward.
The most time consuming part of the project is
adding the relevant connectivity information to the
database. The Aura space service includes a GUI
that allows users to enter data into the space service
based on maps in the AutoCad format. We are
currently in the process of extending this tool to also
allow users to specify the connectivity information.
Once that is completed, we will be able to run full
scale tests of the Walking Time service.

Fig III
Floyd algorithm

Floyd(int L[1..n][1..n])
{

D = L;
P = 0;
for (k=1; k<=n; k++)

for (i=1; i<=n; i++)
for (j=1; j<=n; j++)

if (D[i][k]+D[k][j] < D[i][j]) {
D[i][j] = D[i][k]+D[k][j];
P[i][j] = k;

}
}

Track the
shortest path

VI. Related Work

Car navigation systems and trip planning services

such as MapQuest have to find the “shortest path”
between two points. While there metric is driving
distance (or time), the goal is similar to ours and they
use routing solutions similar to ours. The main
difference is that finding paths inside a building is
more complicated because spaces can be connected
in many different ways, e.g. door, elevator, stairs, …
Roads tend to be more uniform.

A number of groups have observed that coordinate

based (geometric, Euclidian, physical, ..) and
symbolic (semantic, topological, …) models for
space representation have complementary benefits
[9,11,12,13]. Several of these groups also observed
that the term “distance” has a different meaning in
these two types of models. In coordinate-based
systems, distance tends to refer to the Euclidian
distance. In symbolic systems, the concept of
distance is less clearly defined, but it is typically

related to the connectivity between spaces, as it is for
example expressed at the different levels of a space
hierarchy [12,13]; this representation can more easily
be used to represent the walking distance.

The space model and navigation solution presented

in [13] is the closest to our work. It consists of a
topological model (similar to our hybrid space
representation) and an exit hierarchy (similar to our
connectivity information). The main difference with
our work is that the hybrid nature of our space model
makes it possible to automatically calculate the
“primitive distance” between two directly connected
exits while this information has to be obtained from
outside the model in [13]. Moreover, our
representation of exits/connectivity is simpler,
probably because our connectivity information is
defined relative to the hybrid space model.

VII. Conclusion

In this paper, we proposed a path calculation model
based a hybrid space model. The solution uses both
the hierarchical name and coordinate information
provided by the hybrid space model. The space
service is enhanced with space connectivity
information. This allows us to formulate the
problem of finding the path with the shortest walking
distance as a simple routing problem.

Our solution allows the selection of paths that are

customized to individual users. This is especially
important for when walking between floors or
buildings. In those cases, walking time is not simply
proportional to distance, but we have to consider
people’s ability and preferences with respect to
dealing with stairs and elevators.

ACKNOWLEGEMENT

This research was in part funded by the Institute for
Information Industry and the Ministry of Economic Affairs,
Department of Industrial Technology, ROC, and in part by
the National Science Foundation under award number
CCR-0205266.

REFERENCES

[1] Publications on PARC webpage:
http://www.parc.xerox.com/
[2] Project Aura, http://www-2.cs.cmu.edu/~aura/
[3] Changhao Jiang1, Peter Steenkiste “A Hybrid Location
Model with a Computable Location Identifier” In
Proceedings of Ubiquitous Computing. 246-263
[4] Context aware tour guide webpage :
http://140.92.140.46/MiningTeam/context/scenario.htm
[5] NATIONAL MUSEUM OF NATURAL SCIENCE
webpage: http://www.nmns.edu.tw/

[6] Garlan, D., Siewiorek, D., Smailagic, A., and Steenkiste,
P. Project Aura “Towards Distraction-Free Pervasive
Computing.” IEEE Pervasive Computing 1, 2 (April-June
2002), 22–31.
[7] Judd, G., and Steenkiste, P. Providing Contextual
Information to Ubiquitous Computing Applications.
Technical Report CMU-CS-02-154, Department of
Computer Science, Carnegie Mellon University, July 2002.
[8] Next Wave Technology and Research Conference
webpage: http://www.itpilot.org.tw/921216/index.htm
[9] Domnitcheva, S. “Location modeling: State of the art
and challegnes.” In Workshop on Location Modeling for
Ubiquitous Computing (2001).
[10] Zhenlin Wang “ Introduction to Algorithms” webpage:
http://www.csl.mtu.edu/cs4321/www/Lectures/floyd.ppt
[11] Barry Brumitt and Steven Shafer, “Topological World
Modeling Using Semantic Spaces”, Workshop on Location
Modeling for Ubiquitous Computing, held in conjunction
with Ubicomp 2001, September 2001, Atlanta.
[12] Christoph Schlieder, Thomas Vogele, and Anke
Werner, “Location Modeling for Intentional Behavior in
Spatial Partonomies”, Workshop on Location Modeling for
Ubiquitous Computing, held in conjunction with Ubicomp
2001, September 2001, Atlanta.
[13] Haibo Hu and Dik-Lun Lee, “Semantic Location
Modeling for Location Navigation in Mobile
Environments”, 2004 IEEE International Conference on
Mobile Data Management, January 2004, Berkeley.

