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Abstract- The CMU Aura system introduced a hybrid 
location model for space representation in ubiquitous 
computing environments.  The hybrid location model 
combines hierarchical symbolic names with coordinates, 
with the goal of gaining the benefits of both: symbolic 
names offer an intuitive representation and captures 
spatial relationships while coordinates provide high 
precision.  While the hybrid location model has served 
us well, we have so far made little use of the coordinates. 
In this paper we report on our ongoing work of 
implementing an Aura service that estimates walking 
distance.  The availability of both symbolic names and 
coordinates turns out to be very advantageous for this 
service since it provides us both accurate distance 
estimates and spatial relationships that can be used to 
incorporate user preferences. 
 

I. Introduction 
 

Many research groups are exploring are exploring 
context-aware computing. Xerox's Palo Alto 
Research Center (PARC)[1], for example, has been 
working on pervasive computing applications since 
the 1980s. In the context of Project Aura[2][3][6], 
Carnegie Mellon University is developing 
technologies that will reduce user distractions by 
having applications and systems automatically adapt 
to the user’s context, including physical and 
computational context and user preferences. 
 

Location information is a critical piece of context 
information for context-aware applications used by 
mobile users.  Using the user’s location enables 
services such as diverting phone calls to the receiver 
nearest to a user, perfecting data to the service portal 
near the user’s path, locating interesting 
objects/people, navigation, etc. In order to support 
such applications, Aura developed the hybrid location 
model [3], which combines symbolic names with 
coordinates.  The motivation for this design was that 
it combined the benefits of hierarchical symbolic 
names (accurately captures spatial relationships, 
intuitive for users) and coordinates (high degree of 
precision).  In this paper, we report on our work in 
implementing a “walking time” service.  It estimates 
the walking time between two points in space and it 
leverages the benefits of the hybrid space service.  

 
The remainder of this paper is organized as follows.  

We first introduce a motivating application: a 
context-aware museum tour guide.  We then 
describe the Aura hybrid space service and describe 

how it is used by the walking time service.  Finally, 
we describe the status of our implementation. 

 
II. Context Aware Tour Guide 

 
The Context Aware Tour Guide [4] at Institute for 

Information Industry is a ubiquitous computing 
project that focuses on giving museum visitors 
personalized guidance that is context sensitive. The 
goal is to optimize the visitors’ experienced while 
they are visiting complex and unfamiliar environment. 
The target museum is the National Museum of 
Natural Science [5], which is one of the largest 
Museums in Taiwan. It has more than 3 million 
visitors per year and as an educational organization, 
they want to provide visitors with a maximum 
amount of useful information by providing 
interesting tours. We can image that with customized 
information and guidance, tours could be more 
attractive and the tourists would definitely gain more 
knowledge from the same exhibitions.  

 
Traditionally, visitors of museums or art galleries 

are guided by guides who show them one of a set of 
scheduled tours.  These tours typically include both 
exhibits that are of interest and exhibits that are not of 
interest.  Visitors never know on which tour is most 
suitable for them.  More, tours may not always be 
available because there are always more visitors than 
there are guides available.  As a result, we started to 
build a Tour Guide for the National Museum of 
Natural Science, using context-aware technology. 

 
Figure I shows the architecture of the 

context-aware tour guide.  When visitors arrive at 
the museum, they will receive a handheld device.  
Before starting their tour, the visitors will enter some 
preferences (e.g. what type of exhibits they like) and 
personal information (e.g. planned duration of stay, 
walking speed, ..).  Based on this information, the 
Recommendation service will either recommend a 
pre-defined tour that best meets the visitor’s interest 
and schedule or the Recommendation service could 
create a custom tour. The tour will be displayed on a 
map of hand-held device and will provide the visitor 
step by step guidance, including in-depth information 
on the exhibit included in the tour.  Throughout the 
tour, the visitor can provide input to the system about 
the exhibits.  The Recommendation Service can then 
recommend changes to the tour, e.g. to adjust to 



user’s changes in preferences or to avoid rooms that 
have become crowded.  We believe that such a 
context-aware tour guide will enhance the visitor’s 
experience and learning. 

 
Figure I 
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An essential requirement for the tour guide is the 
ability to estimate how long it will take the visitor to 
walk between exhibits. Walking time estimates must 
be personalized: not only does it depend on a 
person’s walking speed but it should also consider 
preferences such as taking stairs versus an elevator. 

 
III. Hybrid Space Model 

 
One important issue for context-aware applications 

is that they must model the physical environment 
through an appropriate location model. The 
prevailing location models fall into two groups: 
hierarchical names and coordinates [9]. Hierarchical 
names organize the space as a hierarchy of spaces, 
similar to for example hierarchical directory names or 
DNS.  They are very intuitive and express spatial 
relationships but they are not very precise.  In 
contrast, coordinates based on geometric models are 
simpler and precise, but they are less intuitive.  
Table I summarizes the differences between the two 
models.  

 
TABLE I 

Comparisons OF Symbolic and Geometric Space Model 

       Space Model 

Feature 

Symbolic Geometric

representation of spatial 

relationships 

Good Poor 

human readability Good Poor 

Specifying locations 

precisely 

Poor Good 

Computing distance 

accurately 

Poor Good 

  

In order to try to gain the benefits of both models, 
the Aura project built a Hybrid Space Model [3].  In 
the hybrid location model, a location is represented 
by an Aura Location Identifier (ALI), which consists 
of a hierarchical name, followed by a set of 
coordinates that identify the location inside the space 
identified by the hierarchical name. Both name and 
the coordinates are optional, i.e. coarse spaces can be 
represented by a hierarchical name only, while in 
some applications, only coordinates are needed (e.g. 
GPS). 

 
Example I 
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ALIs can be used to specify three types of location 
model (Example I). 
• Space ALI represents a physical space in the 

hierarchy, e.g. the Science Movie Theater on the 
first floor of NMNS (see A in Figure II):  

ali://NMNS/SMTheater/floor1/SpaceTheater 
• Point ALI represents the exact position of an 

object, e.g. the location of the entrance of 
Science Movie Theater of NMNS (see C in 
Figure II): 

ali://NMNS/SMTheater/floor1/SpaceTheater#(
10,4,1) 

The coordinates are relative to the Space 
Theater’s space coordinate system 

• Area ALI represents a space defined by the 
application, e.g. the ticket office space of 
Science Movie Theater of NMNS (see B in 
Figure II):  

ali://NMNS/SMTTheater/floor1/#{(1,0),(-1.5,0.
5),(0,3),(2,3.5),(3,1.5)-(1,5)} 

The first group of coordinates specify the four 
corners of the area while (1,5) specifies the 
height range of the area. 

 
Five primitive operations are defined on ALIs: 

• Distance(Ali,Ali) returns the physical distance 
between two ALIs. 

• Contains(Ali,Ali) returns whether one location 
contains another. 

• Within(Ali,Ali) returns whether one location is 
within another. 



• Super(ali) returns the direct super space 
containing the location. 

• Sub(ali) returns the list of all subspaces 
contained in the specified space. 

 
The Hybrid Location model forms the basis for the 

Aura space service, which is part of the Contextual 
Information Service (CIS)[7].   The CIS collects 
information about the user’s physical and computing 
context and makes it available to context-aware 
applications through an SQL-like API.  The CIS 
isolates the context-aware applications from the 
details of how information is collected.  This allows 
the CIS to use multiple sources of information, 
transparently to the user.  This is for example 
important for location information, which can be 
derived from a variety of sources (e.g. RF/ID badges, 
calendar, wireless networks, ..).  The CIS was 
originally designed to support the office environment 
[6,8], but is being ported to the represent the museum 
contextual information. 

 
In order to support the Museum Tour guide, we are 

also implementing a Walking Time service that 
estimates how long it will take a visitor to walk 
between two points. Note that the “distance” function 
defined in the original space service represents 
geometric distance, i.e. it does not consider walls etc, 
so it is not a good indicator of walking time.  The 
walking time service is interesting because it relies 
heavily on both the hierarchical name and coordinate 
features of the Aura space service. 
 

IV. Walking Time Estimation  
 

We discuss the design of the walking time service 
in two steps.  We first discuss walking between two 
points on the same floor and then we look at walking 
between floors or buildings.  First, we introduce the 
concept of a path. 

 
Walking Path 

 
The original space service operates in terms of 

areas and points in areas.  To estimate walking times, 
we also need to introduce the concept of a “path”.  
For instance, we want to find a nearest restroom for 
visitor Kelly (Figure I). A “nearest bathroom” service 
based on the distance function in the ALI Space 
Model will return T2 (Path A) since it is the closest 
bathroom in space.  Unfortunately, Path A between 
Kelly’s location and T2’s location passes through a 
wall.  The nearest bathroom service instead should 
return T2, which can be reached using Path B.    

 
This simple example shows that estimating walking 

time requires us to first calculate feasible (walking) 
paths between two points.  A path simply consists of 
a sequence of points, such that it is possible to walk 

between consecutive points.  In our model, two 
consecutive points can be connected by a straight line, 
called a segment, so, given the coordinates of the two 
points, it is easy to calculate the distance between the 
two points (or the length of the segment).  The 
length of the path is simply the sum of the lengths of 
the segments in the path. 

 
Figure I 
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Walking Time on a Floor 
 
On a single floor, we expect that for most people, 

walking time will be roughly proportional to distance, 
i.e. we can estimate walking time by multiplying  
distance with a user-specific walking speed.  An 
important point is that “distance” is an objective 
metric, so we can use the same algorithm for all 
visitors.  There are some exceptions to this rule.  
For example, visitors with strollers or wheelchairs 
may not be able to use all doorways.  As we will see 
below, it is pretty easy to incorporate these 
constraints in our model by simply removing certain 
“connections” from the model for those visitors.   

 
The next question is how we can identify feasible 

paths between two points and calculate their distance.  
The original space service provides information 
about spaces, including their physical size.  
However, it does not provide information about 
connectivity between spaces, i.e. it does not specify 
what rooms were connected or where the doors might 
be located.  The first step is extend the space service 
to provide this information.  Figure II, for example, 
shows the connectivity information for the space 
shown in Figure I: each dot represents a connection.  
Connections can be doors, e.g. connecting rooms to a 
corridor, or open entrances (i.e. “doors” that cannot 
be closed), or simply locations where two spaces 
flow into each other, e.g. the locations marked P1 and 
P2 show where the corridors in Figure I connect. 



Figure II 
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Specifically, we need to add the following 

information to the space service: 
1. Connectivity information : for each node in the 

space hierarchy (i.e. space), we add connectivity 
information, i.e. what other spaces is it 
connected to. 

2. Information about the nature of the connection, 
e.g. its location (as a set of coordinates), 
possible constraints (e.g. one way only, no 
strollers, ..). 

 
The space service is implemented using a database 

[3].  To add the connectivity information, we 
simply add a table.  The primary columns in the 
new table are a “from” space and a “to” space, both 
in the form of an ALI, and a “coordinate” column.  
An entry simply means that it is possible to walk 
from the “from” space to the “to” space using some 
form of entrance located at the specified coordinates; 
the coordinates are specified relative to the 
coordinate system of the floor.  Additional columns 
can specify constraints, e.g. fire exit only. 

 
Given this connectivity information, we can now 

easily formulate the problem of finding feasible 
paths and of calculating walking distances as a graph 
problem in the following way: 
• The nodes in the graph correspond to the 

connectivity points in the connectivity table. 
• We add two nodes to the graph corresponding to 

the visitor’s current location and target 
destination, both represented as a set of 
coordinates. 

• Edges in the graph correspond to the spaces 
connecting the points. Figure II shows for 
example all the edges connecting the 
connectivity points.  The weights of the edges 
correspond to the length of the segments they 
represent, i.e. the distance between the two 
points; this can be easily calculated based on the 
coordinates associated with each point. 

 
After modeling the connectivity on a floor as a 

directed graph, we can find feasible paths as any 
sequence of edges.  We can find the path 
representing the shortest walking distance by simply 
applying a shortest path routing algorithm to the 
graph.  If some inter-space connections are not 
usable for some visitors, those nodes can simply be 
removed from their graphs. 

 
Our results distance calculation algorithm is as 

follow: 
1. UserLocation = GetUserLocation(UserID) 

2. StartPoint = 

FindNearestConnectionPoint(UserLocation) 

3. Dist_UL_to_StartPoint = 

Distance(UserLocation,,StartPoint) 

4. Path = Get the shortest path between StartPoint 

and Destination 

5. TotalDistance =  

Path.Distance + Dist_UL_to_StartPoint 

 

Walking between Floors 
 
While walking time on a floor is typically 

proportional to the distance between the two points, 
determining the best way to walk between two flows 
is more complex.  The reason is that we have to 
consider the visitors’ preferences with respect to 
using stairs or elevators.  Also, we have to be able 
to consider the personal tradeoff between going to a 
different floor versus walking further on the same 
floor.  Let us consider some example: 
• Some people cannot use stairs and they always 

need an elevator.  Others (e.g. elderly) will 
strongly prefer elevators, while others prefer 
stairs because they dislike the wait associated 
with an elevator. These tradeoffs may depend on 
the number of floors that has to be crossed. 

• Given a choice between a destination (e.g. a 
restroom) on the same floor or on a different 
floor, people will have different preferences.  
Some people will be willing to walk an extra 50 
meters to avoid using stairs/elevators, while for 
others, the cutoff may be only 10 meters. 

Note that these preferences could also be context 
dependent.   For example, they may depend on 
how crowded the museum is (will impact the waiting 
time at the elevator). 
 

The hybrid space service provides two options for 
implementing a multi-floor walking time service.  
The first option is to extend the single floor solution: 
we build graphs for individual floors and use 
information about the location of stairs and elevators 
to connect them.  We then have to calculate 



personalized weights for the edges representing 
stairs and elevators reflecting the user’s preferences 
and possibly context information and solve the 
routing problem.  This is conceptually fairly 
straightforward, although the graph could become 
quite large for large spaces and incorporating 
personal preferences may become tricky.   

 
An alternative is to apply a hierarchical solution 

based on space hierarchy.  We first solve per-floor 
problems to find the shortest distance between both 
the user’s location and the destination and the stairs 
and elevators of interest.  We then solve a small 
“inter-floor” optimization problem.  This could be 
done by exhaustively evaluating the cost of all 
possible paths between the two floors, since the 
number of options will be small. This approach is 
more complex, but it maybe easier to incorporate 
personal preferences.  We plan to implement both 
algorithms and compare them both in terms of 
performance and flexibility.  

 
With both approaches, we need the user’s 

preferences.  The easiest format to use is “time”, 
e.g. a per-floor elevator cost of 1 minute and stair 
cost of 2 minutes would reflect a preference for 
elevators and also a relative preference to walking a 
certain distance.  Note also that we can use the 
same two approaches to estimate the time to walk 
between two buildings. 

 
In important point is that out path finding 

approach uses both the coordinate and symbolic 
aspects of the hybrid space model.  We use the 
symbolic information to specify what spaces are 
(directly) connection while the coordinate system is 
used to automatically calculate distances between 
different connections for the same room.  If either 
aspect were missing, some information would have 
to be imported from outside the model. 
 

 
V. Implementation 

 
We are in the process of implementing the “walking 

distance” service.  The format of the “connectivity” 
table that is added to the space service is shown in 
Table II.  Additional columns will be added later to 
reflect constraints and properties of the connection. 

 
Table II 

Relation Definition of Connection Point in Database 
Field Type Notes 

ConnectionPointID Integer Door 

FromSpaceID Varchar ALI 

ToSpaceID Varchar ALI 

Coordinates Varchar ALI 

To find the shortest path between two connection 
points (Figure III), we implemented the Floyd 
All-Pairs-Shortest-Path algorithm [10]. It uses a 
dynamic-programming methodology to solve the 
All-Pairs-Shortest-Path problem. The algorithm runs 
in O(N3) time, so it is potentially expensive.  If 
necessary, the results for common queries (e.g. to 
find restrooms) could be cached since the information 
is static.  The distance between the user’s location 
and the nearest connection point is calculated on the 
fly using the coordinate system.   

 
Implementing the “walking time” service, once the 

database has been set up, is clearly straighforward.  
The most time consuming part of the project is 
adding the relevant connectivity information to the 
database.  The Aura space service includes a GUI 
that allows users to enter data into the space service 
based on maps in the AutoCad format.  We are 
currently in the process of extending this tool to also 
allow users to specify the connectivity information.  
Once that is completed, we will be able to run full 
scale tests of the Walking Time service. 
 

Fig III 
Floyd algorithm 
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VI. Related Work 
 
Car navigation systems and trip planning services 

such as MapQuest have to find the “shortest path” 
between two points.  While there metric is driving 
distance (or time), the goal is similar to ours and they 
use routing solutions similar to ours.  The main 
difference is that finding paths inside a building is 
more complicated because spaces can be connected 
in many different ways, e.g. door, elevator, stairs, …  
Roads tend to be more uniform. 

 
A number of groups have observed that coordinate 

based (geometric, Euclidian, physical, ..) and 
symbolic (semantic, topological, …) models for 
space representation have complementary benefits 
[9,11,12,13].  Several of these groups also observed 
that the term “distance” has a different meaning in 
these two types of models.  In coordinate-based 
systems, distance tends to refer to the Euclidian 
distance. In symbolic systems, the concept of 
distance is less clearly defined, but it is typically 



related to the connectivity between spaces, as it is for 
example expressed at the different levels of a space 
hierarchy [12,13]; this representation can more easily 
be used to represent the walking distance.   

 
The space model and navigation solution presented 

in [13] is the closest to our work.  It consists of a 
topological model (similar to our hybrid space 
representation) and an exit hierarchy (similar to our 
connectivity information).  The main difference with 
our work is that the hybrid nature of our space model 
makes it possible to automatically calculate the 
“primitive distance” between two directly connected 
exits while this information has to be obtained from 
outside the model in [13].  Moreover, our 
representation of exits/connectivity is simpler, 
probably because our connectivity information is 
defined relative to the hybrid space model. 
 
 

VII. Conclusion 
 

In this paper, we proposed a path calculation model 
based a hybrid space model.  The solution uses both 
the hierarchical name and coordinate information 
provided by the hybrid space model.  The space 
service is enhanced with space connectivity 
information.  This allows us to formulate the 
problem of finding the path with the shortest walking 
distance as a simple routing problem. 

 
Our solution allows the selection of paths that are 

customized to individual users.  This is especially 
important for when walking between floors or 
buildings.  In those cases, walking time is not simply 
proportional to distance, but we have to consider 
people’s ability and preferences with respect to 
dealing with stairs and elevators.  
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