
 1

Facing Uncertainty and Consequence in Context-Aware
Systems: towards an Argumentation Approach

Seng W. Loke

School of Computer Science and Software Engineering
Monash University, Vic 3145, Australia
swloke@csse.monash.edu.au

ABSTRACT
This position paper proposes argumentation structures for
automated reasoning in context-aware systems, for design of
context-aware behaviour, for generating explanations of system
actions to users, and for more expressive rules for user-
programming of context-aware systems.

Keywords
context-aware pervasive computing, argumentation, reasoning,
uncertainty, consequence, user-programming

INTRODUCTION
Due to the huge disparity between the physical world and
the electronic world, one of the challenges in context-aware
applications is to accurately abstract and model real world
situations in the computer. Context-aware systems need to
interpret and recognize situations with limited, uncertain,
possibly inconsistent, and incomplete information in order
to choose appropriate actions [2,3,7]. However, context-
aware systems should take actions that not only suit the
context but also try to avoid disastrous consequences. In
this paper, we highlight the need to model uncertainty in
what a context-aware system believes is happening in the
real world (e.g., in what the system perceives is the context
of its user), and the consequences of the intended actions of
such a system. We contend that an understanding of the
consequences of actions can provide additional safe-
guarding, useful when uncertainty in perceiving context is
inevitable. There are many formalisms for dealing with
uncertainty and various taxonomies of uncertainty concepts
[6]. We explore argumentation as a reasoning mechanism in
context-aware systems, and more expressive rules for user-
programming of context-aware systems. Also,
argumentation structures can be used as a design artifact,
for generating explanations (or justifications) for actions,
and for debugging context-aware systems.

UNCERTAINTY OF CONTEXT AND CONSEQUENCES
OF ACTION
A simple model of a context-aware system is one which
senses the context of a user and based on the context of the
user, decides whether to take a particular action. Such a
system might be modeled via a set of rules mapping context
to beliefs (i.e. what the system thinks is the context) and

beliefs to actions. In the case where there is varying degrees
of uncertainty in perceiving context, the system can be built
to take action only when there is a high certainty in
perceiving context. However, such behaviour might be
unnecessarily cautious, especially when the consequences
of an action taken might not be severe, i.e., for example, the
effects are reversible, and/or there are reasonable
compensatory actions – the potential benefits of the action
outweighs any potential costs. Also, the actions might have
no effect on the physical world. Table 1 below shows a
simple decision analysis of a system where measures of
uncertainty in perceiving context and consequences of
actions to be taken are considered. For simplicity, we
assume that the analysis is considered for a system whose
behaviour is modeled by rules of the form:

IF Context THEN TAKE Action.

The action is only withheld when the system is highly
uncertain of what is perceived of the context and the action
has potentially severe consequences; otherwise, the system
takes the action.

Uncertainty in
Context gathered

Consequence of
Actions

Decision

Low

Drastic Action taken

High Drastic Action withheld

Low Light Action taken

High Light Action taken

Table 1. A simple decision matrix for actions.

Effectively, we are modeling the system with rules of the
form:

IF Uncertainty(Context) < U AND Severity(Action) < S
THEN DO Action

where Uncertainty() and Severity() are measures for
uncertainty in the perceived context and severity of actions,
and U and S are thresholds for the given Action. For a
given action, the developer sets measures U and S as
appropriate to the system’s capabilities (in sensing context),
the extent to which a context can be ascertained, and the
severity of the action. Consider an example from [3]:
“Spying a newsrack, Tom pulls his rented car to the side of

 2

the street and hops out to grab a paper. The car, recognizing
the door has just closed and the engine is running, locks its
doors.” A problem of this scenario is perhaps that
insufficient sensor inputs have been used in guessing the
situation of the user. For example, seats could have an
associated weighing machine to confirm that someone is
seating in the car. However, if this is not feasible, another
means to address the problem might be to explicitly model
the consequences of the action “locking car doors”, an issue
which can be considered at requirements analysis or design
time of the context-aware system. Understanding the
severity of its intending action and the uncertainty about its
user’s situation, the car might then choose a less drastic
action, or use other sensors (e.g., ask the user) before
carrying the action out, or provide a means to the user to
easily reverse (if possible) the action. One way to solve the
ambiguity or uncertainty problem is by asking the user, and
we admit that this will be sometimes needed. So, one
extreme is to always ask the user and the other extreme is to
never ask the user. Our approach of considering the extent
of uncertainty of sensed context and consequences of action
sits in between these two extremes and also helps the
system decide when to ask the user. However, one cannot
be completely exhaustive in anticipating all possible
consequences - human system designers would need to
judge the severity of actions.

RELEVANCE OF ARGUMENTATION FOR CONTEXT-
AWARE APPLICATIONS
Argumentation theories provide a formal account of
reasoning, typically in the case of arguing for or against an
assertion [8]. Arguments are linked with explanations: an
argument structure provides an explanation concerning the
acceptance or rejection of a proposition. Additional
information later obtained may augment the argument
structure affecting the strength of the argument, or the
explanation. Weaknesses in reasoning or difficulties can be
identified via the argument structure. Arguments capture

plausible reasoning: the degree of credibility of a
proposition can be assessed via the strength of arguments
for or against it. Hence, there is a notion of the grounds or
justification for a conclusion made. Argument structures
can be augmented as new information becomes available.
As an example, Figure 1 describes an argumentation
structure proposed by the philosopher Toulmin [9], where
an argument comprises six components: data, modality,
claim, backing, warrant, and rebuttal. The claim of the
argument is the assertion being made based on the data. The
warrant, supported by the backing, is the justification for
making the claim based on the data. The rebuttal attacks the
claim. So, a given claim might have several arguments for it
and arguments against it.

Argumentation Structures as Design Artifacts in
Context-Aware Systems
One use of argumentation structures such as the Toulmin
structure above is as a way to represent how sensed inputs
are related to beliefs about the user’s situation (i.e. the
perceived context) and how beliefs are justifications for
actions. One way in which sensed inputs are map to
perceived context and beliefs to actions is via a set of
Condition-Action like rules. But an argumentation based
approach provides a more comprehensive model since the
sensed inputs are really merely hints (or arguments) to what
the real context is. In addition, such a model will enable
arguments for or against a belief to be represented and
weighed, as well as arguments for or against an action to be
considered. This approach is akin to argumentation-based
design rationale, where argumentation is used to represent
why an artifact is made a certain way. In this case, we use
argumentation to represent context as justifications and
explanations to users for recognized situations and for
actions, and for designers in building systems. Figure 1
shows the example of the Toulmin argument for Tom being
currently in a meeting in room F. For the same claim, with
different sensors, different data and warrants might be

MODALITY

a. Tom’s PDA is in room
F now.
b. Lights on in room F
now.

c. Tom’s diary indicates
a meeting now.

Typical human
behaviour and common
sense knowledge.

a. A person usually carries his PDA.

b. At this time, lights would be needed in room F to see
anything.

Tom passed away
yesterday.

probably Tom is now in a meeting
in room F.

DATA

MODALITY

CLAIM

REBUTTAL
WARRANT BACKING

Figure 1. Toulmin argument for “Tom is in a meeting in room F now.”

 3

employed. There are numerous methods that can be used to
infer the claim from the data, from fuzzy inference rules,
deduction in first order logic, causal reasoning, neural
networks to Bayesian techniques. The argumentation
framework can provide a structure in which different
methods might be integrated.

Moreover, the structure can be used as a basis for
identifying weaknesses in a context-aware system design.
Sources of weaknesses could either be due to the data (e.g.,
inadequate data or inadequate sensors, ambiguity in sensor
readings, imprecision or errors as noted in [5]), the warrant
for the claim given the data (the inference procedure used)
including, for example, the correctness of inference rules,
and the backing for the warrant (e.g., the commonsense
background knowledge assumed).

Argumentation for Automated Reasoning about Context
and Actions
While argumentation structures can be used in the design of
context-aware systems, a formal representation of the
arguments can be used to facilitate automated reasoning.
Via declarative representations of the arguments, a system
can generate explanations (perhaps only when asked) for its
actions and for its inaction, and this facilitates the
debugging of the context-aware system. For more complex
systems, such a representation can be used to test the
system via simulations – to determine what the system
would do under varying circumstances. Now, we illustrate
how reasoning about context and actions can be done using
a formal system based on LA and LV [4].
We have first a database ∆ comprising arguments that map
sensory inputs to beliefs about the user’s context. Each
argument is of the form:)::(WGB , where B is the
belief, G is the grounds for believing B, and W is a measure
of (un)certainty. B is a formula and G is a set of formulae
(similar to propositional logic) and W is a symbol from a
dictionary D. We let D = {+,-} here where “+” means the
grounds support the belief B and “-“ means the grounds
opposes B. We treat ∆ as containing mappings from sensory
inputs to beliefs and from beliefs to other beliefs. This
means that, given some sensory inputs I acquired by the
system, we match I with every argument in ∆ to produce the
set of arguments δ whose grounds are contained in I, given
by δ = {(B:G:W) | I ⊇ G and (B:G:W) ∈∆}. This means
that δ contains the beliefs justified by the sensory inputs,
that is, δ represents the perceived context of the user. The
system might perceive the user to be in more than one
possible context (represented by conflicting beliefs, for
example). Here, for simplicity, suppose that ∆ is designed
such that all the arguments in δ are for a given belief B, i.e.
every argument in δ either supports B or opposes B (this
association, we denoted by δB). As in [4], we can compute
the validity of B by applying the flattening function flat() on
δB which combines all the arguments (for or against B) into

a single number, where we define flat() by subtracting the
number of opposing arguments from the number of
supporting arguments, as follows:

flat(δB) = |{(B:G:W) | W = ‘+’ and (B:G:W) ∈δB }| -

|{(B:G:W) | W = ‘-’ and (B:G:W) ∈δB }|

This computation gives a quantitative measure of the
certainty of perceived context with respect to the inputs I.
In addition, we have

(1) a database Λ of rules which map beliefs (i.e. perceived
user’s context) to actions, where each rule is of the
form (AB � : t) for a belief B, an action A and a
threshold value t such that if flat(δB) > t then A will be
selected as a potential action, which are essentially
condition-action rules,

(2) a database Σ of rules which associates each action with
formulae representing states of the world, where each
rule is of the form (CA� :G) for an action A, state
of the world C (i.e. C represents the consequences of
the action A), and grounds G (i.e., the rule states that
given assumptions G, the consequence of doing A is
the result C), and

(3) a database υ of arguments representing the valuations
of states of the world. Each argument in υ is of the
form (C:G:V), where G is the grounds for saying that C
has valuation V, where V might come from a
dictionary (say D) above. The meaning of (C:G:+) is
then that C is a favourable state of the world assuming
G, and (C:G: -) means that C is not a favourable state
of the world assuming G. (Note that other dictionaries
might be used depending on the application semantics,
and instead of having V explicitly in the database, we
might have an algorithm to compute V based on the
availability of compensation actions, the reversibility
of the action, etc).

The idea is that for each rule of Λ where flat(δB) > t applies,
a possible action is selected. Then, for each possible action
A, we look at Σ to find the consequence C of A, using the
rule where assumptions G are included in inputs I. Once we
found the consequence C, we then find its valuation V using
the knowledge from υ (with arguments whose grounds are
contained in I). In summary, what we have is then a
measure of the (un)certainty of the perceived context (as
given by flat(δB)) and a measure of the consequences (or
severity) of taking a prescribed action A (as given by V).
We can then use a rule such as the following as mentioned
earlier to decide whether to take the action or not:

IF Uncertainty(Context) < U and Severity(Action) < S
THEN DO Action

By adjusting the thresholds U and S in the rules, one can
effectively tune the system from being highly conservative
(always asking the user) to being highly autonomous but

 4

presumptuous. Additional rules can be added such as the
following might be added which tells the system when to
ask the user for approval regarding a given action:

IF Uncertainty(Context) > U’ and Severity(Action) > S’
THEN DO Ask-User

For users, qualitative tagging of situations (attributed to the
certainty levels of context characterizing the situation) [1]
and can be employed in rules, such as certain – evidence
for the situation are adequate, presumed – evidence for the
situation are strong but not adequate to be certain,
suggested – evidence present but not strong, and possible –
no evidence present but no evidence against the situation
either.

IF certain(Context) and Severity(Action) < S’’ THEN

DO Action

Or
IF presumed(Context) or Severity(Action) > S’’’ THEN
DO Ask-User
This is only one example of applying an uncertainty
formalism to context-aware systems, which provides a
richness of representation more than simple condition-
action rules.

SUMMARY AND FUTURE WORK
Uncertainty in a context-aware system might not be
avoidable given its limitations in sensing and reasoning
capabilities – often humans cannot avoid such uncertainty
too. What such a system perceives of the world might
merely be a claim (a “good guess”) which it can be made to
support. We have argued for the use of an argumentation
paradigm, which takes into account uncertainty in
perceiving context and consequences of actions for

(1) user-programming (with rules more expressive than
simple situation-action rules) context-aware systems,

(2) providing design artifacts for system context and
actions,

(3) automated reasoning, and

(4) generating explanations for system actions and
debugging.

The argumentation framework is general and can include
different forms of reasoning. Different procedures (or
warrant) to go from data to claim can be investigated. It can
also be a means to combine different approaches in a hybrid
manner. For example, given some data (e.g., sensor

readings) one procedure produces a claim (e.g., an inferred
context) with a measure of certainty and another procedure
might produce a (possibly the same) claim with a different
measure of certainty. Arbitration or consolidation between
different such claims or different views about the same
claim can then be carried out in an argumentation
framework (in the spirit of the flat() function mentioned
earlier).

There is much future work ahead. We have only sketched
what is possible. Our ongoing work involves adding such
reasoning and explanation capabilities into several context-
aware applications. Various argumentation structures for
designing context-aware applications can be investigated.

REFERENCES
1. Barnden, J.A. Uncertainty and Conflict Handling in the

ATT-Meta Context-Based System for Metaphorical
Reasoning. In: Proceedings of the 3rd International
Conference on Modeling and Using Context. LNAI, Vol.
2116. Springer-Verlag (2001)

2. Dey, A.K., Mankoff, J., Abowd, G., and Carter, S.
Distributed Mediation of Ambiguous Context in Aware
Environments. In: Proceedings of the 15th Annual
Symposium on User Interface Software and Technology
(UIST 2002), Paris, France (2002) 121-130

3. Erickson, T. Some Problems with the Notion of Context-
Aware Computing. In: Communications of the ACM 45(2)
(2002) 102-104

4. Fox J., Parsons S. Arguing about Beliefs and Actions. In:
Hunter, A. and Parsons, S. (eds.): Applications of
Uncertainty Formalisms. LNAI, Springer (1998)

5. Henricksen, K., and Indulska, J. Modelling and Using
Imperfect Context Information. In: Proceedings of the IEEE
Annual Conference on Pervasive Computing and
Communications Workshops, Orlando, Florida, USA (2004)
33-37

6. Parsons, S. Qualitative Methods for Reasoning Under
Uncertainty. MIT Press (2001)

7. Shafer, S.A.N., Brumitt, B., and Cadiz, J.J. Interaction Issues
in Context-Aware Intelligent Environments. In: Interactions
(to appear).

8. Stranieri, A., Zeleznikow, J., and Yearwood, J.
Argumentation Structures that Integrate Dialectical and Non-
Dialectical Reasoning. In: The Knowledge Engineering
Review 16(4) (2001) 331-348

9. Toulmin, S. The Uses of Argument. Cambridge University
Press (1959)

